SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis
- URL: http://arxiv.org/abs/2311.17590v2
- Date: Sun, 28 Apr 2024 13:54:29 GMT
- Title: SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis
- Authors: Ziqiao Peng, Wentao Hu, Yue Shi, Xiangyu Zhu, Xiaomei Zhang, Hao Zhao, Jun He, Hongyan Liu, Zhaoxin Fan,
- Abstract summary: A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses.
Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity.
NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis.
- Score: 24.565073576385913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk
Related papers
- ReSyncer: Rewiring Style-based Generator for Unified Audio-Visually Synced Facial Performer [87.32518573172631]
ReSyncer fuses motion and appearance with unified training.
It supports fast personalized fine-tuning, video-driven lip-syncing, the transfer of speaking styles, and even face swapping.
arXiv Detail & Related papers (2024-08-06T16:31:45Z) - SwapTalk: Audio-Driven Talking Face Generation with One-Shot Customization in Latent Space [13.59798532129008]
We propose an innovative unified framework, SwapTalk, which accomplishes both face swapping and lip synchronization tasks in the same latent space.
We introduce a novel identity consistency metric to more comprehensively assess the identity consistency over time series in generated facial videos.
Experimental results on the HDTF demonstrate that our method significantly surpasses existing techniques in video quality, lip synchronization accuracy, face swapping fidelity, and identity consistency.
arXiv Detail & Related papers (2024-05-09T09:22:09Z) - DREAM-Talk: Diffusion-based Realistic Emotional Audio-driven Method for
Single Image Talking Face Generation [75.90730434449874]
We introduce DREAM-Talk, a two-stage diffusion-based audio-driven framework, tailored for generating diverse expressions and accurate lip-sync concurrently.
Given the strong correlation between lip motion and audio, we then refine the dynamics with enhanced lip-sync accuracy using audio features and emotion style.
Both quantitatively and qualitatively, DREAM-Talk outperforms state-of-the-art methods in terms of expressiveness, lip-sync accuracy and perceptual quality.
arXiv Detail & Related papers (2023-12-21T05:03:18Z) - GestSync: Determining who is speaking without a talking head [67.75387744442727]
We introduce Gesture-Sync: determining if a person's gestures are correlated with their speech or not.
In comparison to Lip-Sync, Gesture-Sync is far more challenging as there is a far looser relationship between the voice and body movement.
We show that the model can be trained using self-supervised learning alone, and evaluate its performance on the LRS3 dataset.
arXiv Detail & Related papers (2023-10-08T22:48:30Z) - Speech2Lip: High-fidelity Speech to Lip Generation by Learning from a
Short Video [91.92782707888618]
We present a decomposition-composition framework named Speech to Lip (Speech2Lip) that disentangles speech-sensitive and speech-insensitive motion/appearance.
We show that our model can be trained by a video of just a few minutes in length and achieve state-of-the-art performance in both visual quality and speech-visual synchronization.
arXiv Detail & Related papers (2023-09-09T14:52:39Z) - Audio-driven Talking Face Generation with Stabilized Synchronization Loss [60.01529422759644]
Talking face generation aims to create realistic videos with accurate lip synchronization and high visual quality.
We first tackle the lip leaking problem by introducing a silent-lip generator, which changes the lips of the identity reference to alleviate leakage.
Experiments show that our model outperforms state-of-the-art methods in both visual quality and lip synchronization.
arXiv Detail & Related papers (2023-07-18T15:50:04Z) - Talking-head Generation with Rhythmic Head Motion [46.6897675583319]
We propose a 3D-aware generative network with a hybrid embedding module and a non-linear composition module.
Our approach achieves controllable, photo-realistic, and temporally coherent talking-head videos with natural head movements.
arXiv Detail & Related papers (2020-07-16T18:13:40Z) - Audio-driven Talking Face Video Generation with Learning-based
Personalized Head Pose [67.31838207805573]
We propose a deep neural network model that takes an audio signal A of a source person and a short video V of a target person as input.
We outputs a synthesized high-quality talking face video with personalized head pose.
Our method can generate high-quality talking face videos with more distinguishing head movement effects than state-of-the-art methods.
arXiv Detail & Related papers (2020-02-24T10:02:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.