End-to-end Joint Rich and Normalized ASR with a limited amount of rich
training data
- URL: http://arxiv.org/abs/2311.17741v1
- Date: Wed, 29 Nov 2023 15:44:39 GMT
- Title: End-to-end Joint Rich and Normalized ASR with a limited amount of rich
training data
- Authors: Can Cui (MULTISPEECH), Imran Ahamad Sheikh, Mostafa Sadeghi
(MULTISPEECH), Emmanuel Vincent (MULTISPEECH)
- Abstract summary: We train a stateless Transducer-based E2E joint rich and normalized ASR system with a limited amount of rich labeled data.
The first approach leads to E2E rich ASR which perform better on out-of-domain data, with up to 9% relative reduction in errors.
The second approach demonstrates the feasibility of an E2E joint rich and normalized ASR system using as low as 5% rich training data with moderate (2.42% absolute) increase in errors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint rich and normalized automatic speech recognition (ASR), that produces
transcriptions both with and without punctuation and capitalization, remains a
challenge. End-to-end (E2E) ASR models offer both convenience and the ability
to perform such joint transcription of speech. Training such models requires
paired speech and rich text data, which is not widely available. In this paper,
we compare two different approaches to train a stateless Transducer-based E2E
joint rich and normalized ASR system, ready for streaming applications, with a
limited amount of rich labeled data. The first approach uses a language model
to generate pseudo-rich transcriptions of normalized training data. The second
approach uses a single decoder conditioned on the type of the output. The first
approach leads to E2E rich ASR which perform better on out-of-domain data, with
up to 9% relative reduction in errors. The second approach demonstrates the
feasibility of an E2E joint rich and normalized ASR system using as low as 5%
rich training data with moderate (2.42% absolute) increase in errors.
Related papers
- UCorrect: An Unsupervised Framework for Automatic Speech Recognition
Error Correction [18.97378605403447]
We propose UCorrect, an unsupervised Detector-Generator-Selector framework for ASR Error Correction.
Experiments on the public AISHELL-1 dataset and WenetSpeech dataset show the effectiveness of UCorrect.
arXiv Detail & Related papers (2024-01-11T06:30:07Z) - LibriSpeech-PC: Benchmark for Evaluation of Punctuation and
Capitalization Capabilities of end-to-end ASR Models [58.790604613878216]
We introduce a LibriSpeech-PC benchmark designed to assess the punctuation and capitalization prediction capabilities of end-to-end ASR models.
The benchmark includes a LibriSpeech-PC dataset with restored punctuation and capitalization, a novel evaluation metric called Punctuation Error Rate (PER) that focuses on punctuation marks, and initial baseline models.
arXiv Detail & Related papers (2023-10-04T16:23:37Z) - Convoifilter: A case study of doing cocktail party speech recognition [59.80042864360884]
The model can decrease ASR's word error rate (WER) from 80% to 26.4% through this approach.
We openly share our pre-trained model to foster further research hf.co/nguyenvulebinh/voice-filter.
arXiv Detail & Related papers (2023-08-22T12:09:30Z) - An Experimental Study on Private Aggregation of Teacher Ensemble
Learning for End-to-End Speech Recognition [51.232523987916636]
Differential privacy (DP) is one data protection avenue to safeguard user information used for training deep models by imposing noisy distortion on privacy data.
In this work, we extend PATE learning to work with dynamic patterns, namely speech, and perform one very first experimental study on ASR to avoid acoustic data leakage.
arXiv Detail & Related papers (2022-10-11T16:55:54Z) - Multiple-hypothesis RNN-T Loss for Unsupervised Fine-tuning and
Self-training of Neural Transducer [20.8850874806462]
This paper proposes a new approach to perform unsupervised fine-tuning and self-training using unlabeled speech data.
For the fine-tuning task, ASR models are trained using supervised data from Wall Street Journal (WSJ), Aurora-4 along with CHiME-4 real noisy data as unlabeled data.
For the self-training task, ASR models are trained using supervised data from Wall Street Journal (WSJ), Aurora-4 along with CHiME-4 real noisy data as unlabeled data.
arXiv Detail & Related papers (2022-07-29T15:14:03Z) - End-to-end contextual asr based on posterior distribution adaptation for
hybrid ctc/attention system [61.148549738631814]
End-to-end (E2E) speech recognition architectures assemble all components of traditional speech recognition system into a single model.
Although it simplifies ASR system, it introduces contextual ASR drawback: the E2E model has worse performance on utterances containing infrequent proper nouns.
We propose to add a contextual bias attention (CBA) module to attention based encoder decoder (AED) model to improve its ability of recognizing the contextual phrases.
arXiv Detail & Related papers (2022-02-18T03:26:02Z) - Attention-based Multi-hypothesis Fusion for Speech Summarization [83.04957603852571]
Speech summarization can be achieved by combining automatic speech recognition (ASR) and text summarization (TS)
ASR errors directly affect the quality of the output summary in the cascade approach.
We propose a cascade speech summarization model that is robust to ASR errors and that exploits multiple hypotheses generated by ASR to attenuate the effect of ASR errors on the summary.
arXiv Detail & Related papers (2021-11-16T03:00:29Z) - Hallucination of speech recognition errors with sequence to sequence
learning [16.39332236910586]
When plain text data is to be used to train systems for spoken language understanding or ASR, a proven strategy is to hallucinate what the ASR outputs would be given a gold transcription.
We present novel end-to-end models to directly predict hallucinated ASR word sequence outputs, conditioning on an input word sequence as well as a corresponding phoneme sequence.
This improves prior published results for recall of errors from an in-domain ASR system's transcription of unseen data, as well as an out-of-domain ASR system's transcriptions of audio from an unrelated task.
arXiv Detail & Related papers (2021-03-23T02:09:39Z) - Robust Prediction of Punctuation and Truecasing for Medical ASR [18.08508027663331]
This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing.
We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data.
arXiv Detail & Related papers (2020-07-04T07:15:13Z) - Adapting End-to-End Speech Recognition for Readable Subtitles [15.525314212209562]
In some use cases such as subtitling, verbatim transcription would reduce output readability given limited screen size and reading time.
We first investigate a cascaded system, where an unsupervised compression model is used to post-edit the transcribed speech.
Experiments show that with limited data far less than needed for training a model from scratch, we can adapt a Transformer-based ASR model to incorporate both transcription and compression capabilities.
arXiv Detail & Related papers (2020-05-25T14:42:26Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.