Addressing Membership Inference Attack in Federated Learning with Model Compression
- URL: http://arxiv.org/abs/2311.17750v2
- Date: Thu, 4 Jul 2024 08:33:33 GMT
- Title: Addressing Membership Inference Attack in Federated Learning with Model Compression
- Authors: Gergely Dániel Németh, Miguel Ángel Lozano, Novi Quadrianto, Nuria Oliver,
- Abstract summary: Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learning.
Recent works have reported that FL can leak private client data through membership inference attacks.
We show that effectiveness of these attacks negatively correlates with the size of the client's datasets and model complexity.
- Score: 8.842172558292027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has been proposed as a privacy-preserving solution for machine learning. However, recent works have reported that FL can leak private client data through membership inference attacks. In this paper, we show that the effectiveness of these attacks on the clients negatively correlates with the size of the client's datasets and model complexity. Based on this finding, we study the capabilities of model-agnostic Federated Learning to preserve privacy, as it enables the use of models of varying complexity in the clients. To systematically study this topic, we first propose a taxonomy of model-agnostic FL methods according to the strategies adopted by the clients to select the sub-models from the server's model. This taxonomy provides a framework for existing model-agnostic FL approaches and leads to the proposal of new FL methods to fill the gaps in the taxonomy. Next, we analyze the privacy-performance trade-off of all the model-agnostic FL architectures as per the proposed taxonomy when subjected to 3 different membership inference attacks on the CIFAR-10 and CIFAR-100 vision datasets. In our experiments, we find that randomness in the strategy used to select the server's sub-model to train the clients' models can control the clients' privacy while keeping competitive performance on the server's side.
Related papers
- Federated Behavioural Planes: Explaining the Evolution of Client Behaviour in Federated Learning [6.64590374742412]
We introduce Federated Behavioural Planes (FBPs), a novel method to analyse, visualise, and explain the dynamics of FL systems.
Our experiments demonstrate that FBPs provide informative trajectories describing the evolving states of clients.
We propose a robust aggregation technique named Federated Behavioural Shields to detect malicious or noisy client models.
arXiv Detail & Related papers (2024-05-24T15:17:51Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
Federated learning is a distributed mechanism that trained large-scale neural network models with the participation of multiple clients.
With this feature, federated learning is considered a secure solution for data privacy issues.
We proposed the blockchain-based optimized client selection and privacy-preserved framework.
arXiv Detail & Related papers (2023-07-25T01:35:51Z) - Confidence-aware Personalized Federated Learning via Variational
Expectation Maximization [34.354154518009956]
We present a novel framework for personalized Federated Learning (PFL)
PFL is a distributed learning scheme to train a shared model across clients.
We present a novel framework for PFL based on hierarchical modeling and variational inference.
arXiv Detail & Related papers (2023-05-21T20:12:27Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Closing the Gap between Client and Global Model Performance in
Heterogeneous Federated Learning [2.1044900734651626]
We show how the chosen approach for training custom client models has an impact on the global model.
We propose a new approach that combines KD and Learning without Forgetting (LwoF) to produce improved personalised models.
arXiv Detail & Related papers (2022-11-07T11:12:57Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.