U-Net v2: Rethinking the Skip Connections of U-Net for Medical Image Segmentation
- URL: http://arxiv.org/abs/2311.17791v2
- Date: Sat, 30 Mar 2024 20:51:33 GMT
- Title: U-Net v2: Rethinking the Skip Connections of U-Net for Medical Image Segmentation
- Authors: Yaopeng Peng, Milan Sonka, Danny Z. Chen,
- Abstract summary: We introduce U-Net v2, a new robust and efficient U-Net variant for medical image segmentation.
It aims to augment the infusion of semantic information into low-level features while simultaneously refining high-level features with finer details.
- Score: 14.450329809640422
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we introduce U-Net v2, a new robust and efficient U-Net variant for medical image segmentation. It aims to augment the infusion of semantic information into low-level features while simultaneously refining high-level features with finer details. For an input image, we begin by extracting multi-level features with a deep neural network encoder. Next, we enhance the feature map of each level by infusing semantic information from higher-level features and integrating finer details from lower-level features through Hadamard product. Our novel skip connections empower features of all the levels with enriched semantic characteristics and intricate details. The improved features are subsequently transmitted to the decoder for further processing and segmentation. Our method can be seamlessly integrated into any Encoder-Decoder network. We evaluate our method on several public medical image segmentation datasets for skin lesion segmentation and polyp segmentation, and the experimental results demonstrate the segmentation accuracy of our new method over state-of-the-art methods, while preserving memory and computational efficiency. Code is available at: https://github.com/yaoppeng/U-Net_v2
Related papers
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
High-resolution images are preferable in medical imaging domain as they significantly improve the diagnostic capability of the underlying method.
Most of the existing deep learning-based techniques for medical image segmentation are optimized for input images having small spatial dimensions and perform poorly on high-resolution images.
We propose a parallel-in-branch architecture called TransResNet, which incorporates Transformer and CNN in a parallel manner to extract features from multi-resolution images independently.
arXiv Detail & Related papers (2024-10-01T18:22:34Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
Single encoder-decoder methodologies for semantic segmentation are reaching their peak in terms of segmentation quality and efficiency per number of layers.
We propose a new architecture based on a decoder which uses a set of shallow networks for capturing more information content.
In order to further improve the architecture we introduce a weight function which aims to re-balance classes to increase the attention of the networks to under-represented objects.
arXiv Detail & Related papers (2020-07-19T18:44:34Z) - Boundary-aware Context Neural Network for Medical Image Segmentation [15.585851505721433]
Medical image segmentation can provide reliable basis for further clinical analysis and disease diagnosis.
Most existing CNNs-based methods produce unsatisfactory segmentation mask without accurate object boundaries.
In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation.
arXiv Detail & Related papers (2020-05-03T02:35:49Z) - UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation [20.558512044987125]
We propose a novel UNet 3+, which takes advantage of full-scale skip connections and deep supervisions.
The proposed method is especially benefiting for organs that appear at varying scales.
arXiv Detail & Related papers (2020-04-19T08:05:59Z) - Multi-level Context Gating of Embedded Collective Knowledge for Medical
Image Segmentation [32.96604621259756]
We propose an extension of U-Net for medical image segmentation.
We take full advantages of U-Net, Squeeze and Excitation (SE) block, bi-directional ConvLSTM (BConvLSTM), and the mechanism of dense convolutions.
The proposed model is evaluated on six datasets.
arXiv Detail & Related papers (2020-03-10T12:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.