Improving Interpretation Faithfulness for Vision Transformers
- URL: http://arxiv.org/abs/2311.17983v2
- Date: Fri, 3 May 2024 15:49:16 GMT
- Title: Improving Interpretation Faithfulness for Vision Transformers
- Authors: Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, Di Wang,
- Abstract summary: Vision Transformers (ViTs) have achieved state-of-the-art performance for various vision tasks.
ViTs suffer from issues with explanation faithfulness, as their focal points are fragile to adversarial attacks.
We propose a rigorous approach to mitigate these issues by introducing Faithful ViTs (FViTs)
- Score: 42.86486715574245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformers (ViTs) have achieved state-of-the-art performance for various vision tasks. One reason behind the success lies in their ability to provide plausible innate explanations for the behavior of neural architectures. However, ViTs suffer from issues with explanation faithfulness, as their focal points are fragile to adversarial attacks and can be easily changed with even slight perturbations on the input image. In this paper, we propose a rigorous approach to mitigate these issues by introducing Faithful ViTs (FViTs). Briefly speaking, an FViT should have the following two properties: (1) The top-$k$ indices of its self-attention vector should remain mostly unchanged under input perturbation, indicating stable explanations; (2) The prediction distribution should be robust to perturbations. To achieve this, we propose a new method called Denoised Diffusion Smoothing (DDS), which adopts randomized smoothing and diffusion-based denoising. We theoretically prove that processing ViTs directly with DDS can turn them into FViTs. We also show that Gaussian noise is nearly optimal for both $\ell_2$ and $\ell_\infty$-norm cases. Finally, we demonstrate the effectiveness of our approach through comprehensive experiments and evaluations. Results show that FViTs are more robust against adversarial attacks while maintaining the explainability of attention, indicating higher faithfulness.
Related papers
- Sparse Double Descent in Vision Transformers: real or phantom threat? [3.9533044769534444]
Vision transformers (ViTs) are state-of-the-art thanks to their attention-based approach.
Some studies have reported a sparse double descent'' phenomenon that can occur in modern deep-learning models.
This raises practical questions about the optimal size of the model and the quest over finding the best trade-off between sparsity and performance.
arXiv Detail & Related papers (2023-07-26T15:33:35Z) - Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image
Classification [4.843654097048771]
Vision Transformers (ViT) are competing to replace Convolutional Neural Networks (CNN) for various computer vision tasks in medical imaging.
Recent works have shown that ViTs are also susceptible to such attacks and suffer significant performance degradation under attack.
We propose a novel self-ensembling method to enhance the robustness of ViT in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-08-04T19:02:24Z) - Deeper Insights into ViTs Robustness towards Common Corruptions [82.79764218627558]
We investigate how CNN-like architectural designs and CNN-based data augmentation strategies impact on ViTs' robustness towards common corruptions.
We demonstrate that overlapping patch embedding and convolutional Feed-Forward Network (FFN) boost performance on robustness.
We also introduce a novel conditional method enabling input-varied augmentations from two angles.
arXiv Detail & Related papers (2022-04-26T08:22:34Z) - Patch-Fool: Are Vision Transformers Always Robust Against Adversarial
Perturbations? [21.32962679185015]
Vision transformers (ViTs) have recently set off a new wave in neural architecture design thanks to their record-breaking performance in vision tasks.
Recent works show that ViTs are more robust against adversarial attacks as compared with convolutional neural networks (CNNs)
We propose a dedicated attack framework, dubbed Patch-Fool, that fools the self-attention mechanism by attacking its basic component.
arXiv Detail & Related papers (2022-03-16T04:45:59Z) - Anti-Oversmoothing in Deep Vision Transformers via the Fourier Domain
Analysis: From Theory to Practice [111.47461527901318]
Vision Transformer (ViT) has recently demonstrated promise in computer vision problems.
ViT saturates quickly with depth increasing, due to the observed attention collapse or patch uniformity.
We propose two techniques to mitigate the undesirable low-pass limitation.
arXiv Detail & Related papers (2022-03-09T23:55:24Z) - Coarse-to-Fine Vision Transformer [83.45020063642235]
We propose a coarse-to-fine vision transformer (CF-ViT) to relieve computational burden while retaining performance.
Our proposed CF-ViT is motivated by two important observations in modern ViT models.
Our CF-ViT reduces 53% FLOPs of LV-ViT, and also achieves 2.01x throughput.
arXiv Detail & Related papers (2022-03-08T02:57:49Z) - Towards Transferable Adversarial Attacks on Vision Transformers [110.55845478440807]
Vision transformers (ViTs) have demonstrated impressive performance on a series of computer vision tasks, yet they still suffer from adversarial examples.
We introduce a dual attack framework, which contains a Pay No Attention (PNA) attack and a PatchOut attack, to improve the transferability of adversarial samples across different ViTs.
arXiv Detail & Related papers (2021-09-09T11:28:25Z) - On the Adversarial Robustness of Visual Transformers [129.29523847765952]
This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations.
Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-03-29T14:48:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.