Attaining near-ideal Dicke superradiance in expanded spatial domains
- URL: http://arxiv.org/abs/2311.18330v2
- Date: Wed, 3 Jan 2024 10:23:58 GMT
- Title: Attaining near-ideal Dicke superradiance in expanded spatial domains
- Authors: Jun Ren, Shicheng Zhu and Z. D. Wang
- Abstract summary: Superradiance for arrays of inverted emitters in free space requires interactions far beyond the nearest-neighbor.
Epsilon-near-zero (ENZ) materials, which exhibit infinite effective wavelengths, can mediate long-range interactions between emitters.
We employ a general method to assess the occurrence of superradiance, which is applicable to various coupling scenarios.
The findings of this work have prospective applications in quantum information processing and light-matter interaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dicke superradiance is essentially a case of correlated dissipation leading
to the macroscopic quantum coherence. Superradiance for arrays of inverted
emitters in free space requires interactions far beyond the nearest-neighbor,
limiting its occurrence to small emitter-emitter distances. Epsilon-near-zero
(ENZ) materials, which exhibit infinite effective wavelengths, can mediate
long-range interactions between emitters. We investigate the superradiance
properties of two ENZ structures, namely plasmonic waveguides and dielectric
photonic crystals, and demonstrate their potential to support near-ideal Dicke
superradiance across expanded spatial domains. We employ a general method that
we have developed to assess the occurrence of superradiance, which is
applicable to various coupling scenarios and only relies on the decoherence
matrix. Furthermore, by numerically examining the emission dynamics of the
few-emitter systems, we distinct the roles of quantum coherence at different
stages of emission for the case of all-to-all interaction, and demonstrate that
the maximum quantum coherence in the system can be determined using the maximum
photon burst rate. The findings of this work have prospective applications in
quantum information processing and light-matter interaction.
Related papers
- Cavity-enhanced superconductivity via band engineering [0.0]
We consider a two-dimensional electron gas interacting with a quantized cavity mode.
We find that the coupling between the electrons and the photons in the cavity enhances the superconducting gap.
arXiv Detail & Related papers (2024-05-14T14:21:02Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Super- and subradiant dynamics of quantum emitters mediated by atomic
matter waves [0.0]
We explore cooperative dynamics of quantum emitters in an optical lattice that interact by radiating atomic matter waves.
We demonstrate directional super- and subradiance from a superfluid phase with tunable radiative phase lags.
We observe a coupling to collective bound states with radiation trapped at and between the emitters.
arXiv Detail & Related papers (2023-11-16T00:37:06Z) - Bound states in the continuum in subwavelength emitter arrays [0.0]
We show how bound states in the continuum (BICs) which are completely decoupled from radiative states emerge in non-Bravais lattices of emitters.
We discuss how thanks to the quasi-BICs, a rich phenomenology takes place in the reflectivity spectrum, with asymmetric Fano resonances and an electromagnetically induced transparency window.
arXiv Detail & Related papers (2023-01-20T21:02:38Z) - Dicke superradiance requires interactions beyond nearest-neighbors [0.0]
Superradiant burst is most commonly observed in systems with long-range interactions between the emitters.
We show that Dicke superradiance requires minimally the inclusion of next-nearest-neighbor interactions.
Our findings provide key physical insights to the understanding of collective decay in many-body quantum systems.
arXiv Detail & Related papers (2022-11-01T18:01:15Z) - Coherent super- and subradiant dynamics between distant optical quantum
emitters [5.240984067778683]
Single emitter radiation can be tailored by the photonic environment.
Multiple emitters fundamentally extends this picture following a "more is different" dictum.
Subradiant states are particularly challenging to realize being highly sensitive to imperfections and decoherence.
arXiv Detail & Related papers (2022-10-05T17:59:06Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.