Multilevel Saliency-Guided Self-Supervised Learning for Image Anomaly
Detection
- URL: http://arxiv.org/abs/2311.18332v1
- Date: Thu, 30 Nov 2023 08:03:53 GMT
- Title: Multilevel Saliency-Guided Self-Supervised Learning for Image Anomaly
Detection
- Authors: Jianjian Qin, Chunzhi Gu, Jun Yu, Chao Zhang
- Abstract summary: Anomaly detection (AD) is a fundamental task in computer vision.
We propose CutSwap, which leverages saliency guidance to incorporate semantic cues for augmentation.
CutSwap achieves state-of-the-art AD performance on two mainstream AD benchmark datasets.
- Score: 15.212031255539022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) is a fundamental task in computer vision. It aims to
identify incorrect image data patterns which deviate from the normal ones.
Conventional methods generally address AD by preparing augmented negative
samples to enforce self-supervised learning. However, these techniques
typically do not consider semantics during augmentation, leading to the
generation of unrealistic or invalid negative samples. Consequently, the
feature extraction network can be hindered from embedding critical features. In
this study, inspired by visual attention learning approaches, we propose
CutSwap, which leverages saliency guidance to incorporate semantic cues for
augmentation. Specifically, we first employ LayerCAM to extract multilevel
image features as saliency maps and then perform clustering to obtain multiple
centroids. To fully exploit saliency guidance, on each map, we select a pixel
pair from the cluster with the highest centroid saliency to form a patch pair.
Such a patch pair includes highly similar context information with dense
semantic correlations. The resulting negative sample is created by swapping the
locations of the patch pair. Compared to prior augmentation methods, CutSwap
generates more subtle yet realistic negative samples to facilitate quality
feature learning. Extensive experimental and ablative evaluations demonstrate
that our method achieves state-of-the-art AD performance on two mainstream AD
benchmark datasets.
Related papers
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - Embedding contrastive unsupervised features to cluster in- and
out-of-distribution noise in corrupted image datasets [18.19216557948184]
Using search engines for web image retrieval is a tempting alternative to manual curation when creating an image dataset.
Their main drawback remains the proportion of incorrect (noisy) samples retrieved.
We propose a two stage algorithm starting with a detection step where we use unsupervised contrastive feature learning.
We find that the alignment and uniformity principles of contrastive learning allow OOD samples to be linearly separated from ID samples on the unit hypersphere.
arXiv Detail & Related papers (2022-07-04T16:51:56Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
Existing works in self-supervised landmark detection are based on learning dense (pixel-level) feature representations from an image.
We introduce an approach to enhance the learning of dense equivariant representations in a self-supervised fashion.
We show that having such a prior in the feature extractor helps in landmark detection, even under drastically limited number of annotations.
arXiv Detail & Related papers (2022-04-06T17:48:18Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Min-Max Similarity: A Contrastive Learning Based Semi-Supervised
Learning Network for Surgical Tools Segmentation [0.0]
We propose a semi-supervised segmentation network based on contrastive learning.
In contrast to the previous state-of-the-art, we introduce a contrastive learning form of dual-view training.
Our proposed method outperforms state-of-the-art semi-supervised and fully supervised segmentation algorithms consistently.
arXiv Detail & Related papers (2022-03-29T01:40:26Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
This paper studies how much it can help address domain shifts if we further have a few target samples labeled.
To explore the full potential of landmarks, we incorporate a prototypical alignment (PA) module which calculates a target prototype for each class from the landmarks.
Specifically, we severely perturb the labeled images, making PA non-trivial to achieve and thus promoting model generalizability.
arXiv Detail & Related papers (2021-04-19T08:46:08Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions.
We propose an active learning framework, which progressively integrates pixel-level annotations during training.
Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of-the-art CAMs and AL methods.
arXiv Detail & Related papers (2020-10-10T03:25:54Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.