From the classical Frenet-Serret apparatus to the curvature and torsion of quantum-mechanical evolutions. Part II. Nonstationary Hamiltonians
- URL: http://arxiv.org/abs/2311.18463v3
- Date: Wed, 29 May 2024 19:40:02 GMT
- Title: From the classical Frenet-Serret apparatus to the curvature and torsion of quantum-mechanical evolutions. Part II. Nonstationary Hamiltonians
- Authors: Paul M. Alsing, Carlo Cafaro,
- Abstract summary: We show how to quantify the bending and twisting of quantum curves traced by state vectors evolving under nonstationary Hamiltonians.
We find that the time-varying setting exhibits a richer structure from a statistical standpoint.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a geometric perspective on how to quantify the bending and the twisting of quantum curves traced by state vectors evolving under nonstationary Hamiltonians. Specifically, relying on the existing geometric viewpoint for stationary Hamiltonians, we discuss the generalization of our theoretical construct to time-dependent quantum-mechanical scenarios where both time-varying curvature and torsion coefficients play a key role. Specifically, we present a quantum version of the Frenet-Serret apparatus for a quantum trajectory in projective Hilbert space traced out by a parallel-transported pure quantum state evolving unitarily under a time-dependent Hamiltonian specifying the Schrodinger evolution equation. The time-varying curvature coefficient is specified by the magnitude squared of the covariant derivative of the tangent vector to the state vector and measures the bending of the quantum curve. The time-varying torsion coefficient, instead, is given by the magnitude squared of the projection of the covariant derivative of the tangent vector to the state vector, orthogonal to the tangent vector and state vector and, in addition, measures the twisting of the quantum curve. We find that the time-varying setting exhibits a richer structure from a statistical standpoint. For instance, unlike the time-independent configuration, we find that the notion of generalized variance enters nontrivially in the definition of the torsion of a curve traced out by a quantum state evolving under a nonstationary Hamiltonian. To physically illustrate the significance of our construct, we apply it to an exactly soluble time-dependent two-state Rabi problem specified by a sinusoidal oscillating time-dependent potential...
Related papers
- Curvature of Quantum Evolutions for Qubits in Time-Dependent Magnetic Fields [0.0]
We present an exact analytical expression of the curvature of a quantum evolution for a two-level quantum system immersed in a time-dependent magnetic field.
We show that the quantum curve is nongeodesic since the geodesic efficiency of the quantum evolution is strictly less than one.
arXiv Detail & Related papers (2024-08-26T12:49:28Z) - Quantum Mechanics in Curved Space(time) with a Noncommutative Geometric Perspective [0.0]
We take seriously the noncommutative symplectic geometry corresponding to the quantum observable algebra.
The work points to a very different approach to quantum gravity.
arXiv Detail & Related papers (2024-06-20T10:44:06Z) - From the classical Frenet-Serret apparatus to the curvature and torsion of quantum-mechanical evolutions. Part I. Stationary Hamiltonians [0.0]
We propose a quantum version of the Frenet-Serret apparatus for a quantum trajectory in projective Hilbert space.
Our proposed constant curvature coefficient is given by the magnitude squared of the covariant derivative of the tangent vector to the state vector.
Our proposed constant torsion coefficient is defined in terms of the magnitude squared of the projection of the covariant derivative of the tangent vector.
arXiv Detail & Related papers (2023-11-30T11:09:49Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - $\mathcal{PT}$-symmetry in compact phase space for a linear Hamiltonian [0.0]
We study the time evolution of a PT-symmetric, non-Hermitian quantum system for which the associated phase space is compact.
We analyze how the non-Hermitian part of the Hamiltonian affects the time evolution of two archetypical quantum states, coherent and Dicke states.
arXiv Detail & Related papers (2020-07-30T20:38:00Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.