Self-gravitational dephasing of quasi-classical Stern-Gerlach
trajectories
- URL: http://arxiv.org/abs/2311.18464v1
- Date: Thu, 30 Nov 2023 11:17:45 GMT
- Title: Self-gravitational dephasing of quasi-classical Stern-Gerlach
trajectories
- Authors: Andr\'e Gro{\ss}ardt
- Abstract summary: The Schr"odinger-Newton equation predicts a gravitational self-force between the two trajectories corresponding to the two z-spin eigenvalues for a particle in a Stern-Gerlach interferometer.
For the experimentally relevant case of a spherical particle with localized wave function, we present a re-derivation of that phase which is both rigorous in its approximations and concise, allowing for simple but accurate experimental predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The nonlinear Schr\"odinger-Newton equation, a prospective semiclassical
alternative to a quantized theory of gravity, predicts a gravitational
self-force between the two trajectories corresponding to the two z-spin
eigenvalues for a particle in a Stern-Gerlach interferometer. To leading order,
this force results in a relative phase between the trajectories. For the
experimentally relevant case of a spherical particle with localized wave
function, we present a re-derivation of that phase which is both rigorous in
its approximations and concise, allowing for simple but accurate experimental
predictions.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Leading correction to the relativistic Foldy-Wouthuysen Hamiltonian [55.2480439325792]
We rigorously derive a leading correction in the weak-field approximation to the known relativistic Foldy-Wouthuysen Hamiltonian.
For Dirac particles, the relativistic wave equation of the second order is obtained with the correction similar to that to the Foldy-Wouthuysen Hamiltonian.
arXiv Detail & Related papers (2024-08-03T12:53:41Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Gravitational Harmonium: Gravitationally Induced Entanglement in a
Harmonic Trap [0.0]
We give a non-relativistic quantum mechanical analysis of the gravitationally induced entanglement of this system.
The present work serves as the basis for a subsequent investigation, which models this system using quantum field theory.
arXiv Detail & Related papers (2023-02-10T19:00:04Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Dephasing and inhibition of spin interference from semi-classical
self-gravitation [0.0]
We present a model to study effects of self-gravitation from semi-classical gravity using spin superposition states in inhomogeneous magnetic fields.
Results suggest that spin interferometry could provide a more accessible route towards an experimental test of quantum aspects of gravity.
arXiv Detail & Related papers (2021-07-13T11:09:38Z) - Fresh look at the effects of gravitational tidal forces on a
freely-falling quantum particle [0.0]
We take a closer and new look at the effects of tidal forces on the free fall of a quantum particle inside a spherically symmetric gravitational field.
We derive the corresponding Schr"odinger equation for the particle by starting from the fully relativistic Klein-Gordon equation.
arXiv Detail & Related papers (2021-02-18T18:25:08Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.