Accurate Segmentation of Optic Disc And Cup from Multiple Pseudo-labels by Noise-aware Learning
- URL: http://arxiv.org/abs/2311.18496v2
- Date: Fri, 15 Mar 2024 08:38:04 GMT
- Title: Accurate Segmentation of Optic Disc And Cup from Multiple Pseudo-labels by Noise-aware Learning
- Authors: Tengjin Weng, Yang Shen, Zhidong Zhao, Zhiming Cheng, Shuai Wang,
- Abstract summary: We propose an innovative label-denoising method of Multiple Pseudo-labels Noise-aware Network (MPNN) for accurate optic disc and cup segmentation.
Specifically, the MPNN generates pseudo-labels by multiple different networks trained on true labels, and the pixel-level consensus information extracted from these pseudo-labels guides.
The training framework of the MPNN is constructed by a teacher-student architecture to learn segmentation from clean pixels and noisy pixels.
- Score: 16.09436396639938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optic disc and cup segmentation plays a crucial role in automating the screening and diagnosis of optic glaucoma. While data-driven convolutional neural networks (CNNs) show promise in this area, the inherent ambiguity of segmenting objects and background boundaries in the task of optic disc and cup segmentation leads to noisy annotations that impact model performance. To address this, we propose an innovative label-denoising method of Multiple Pseudo-labels Noise-aware Network (MPNN) for accurate optic disc and cup segmentation. Specifically, the Multiple Pseudo-labels Generation and Guided Denoising (MPGGD) module generates pseudo-labels by multiple different initialization networks trained on true labels, and the pixel-level consensus information extracted from these pseudo-labels guides to differentiate clean pixels from noisy pixels. The training framework of the MPNN is constructed by a teacher-student architecture to learn segmentation from clean pixels and noisy pixels. Particularly, such a framework adeptly leverages (i) reliable and fundamental insight from clean pixels and (ii) the supplementary knowledge within noisy pixels via multiple perturbation-based unsupervised consistency. Compared to other label-denoising methods, comprehensive experimental results on the RIGA dataset demonstrate our method's excellent performance. The code is available at https://github.com/wwwtttjjj/MPNN
Related papers
- CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection [58.07124777351955]
We introduce CamoTeacher, a novel semi-supervised COD framework, utilizing Dual-Rotation Consistency Learning(DRCL)
DRCL minimizes pseudo-label noise by leveraging rotation views' consistency in pixel-level and instance-level.
Our code will be available soon.
arXiv Detail & Related papers (2024-08-15T09:33:43Z) - PNT-Edge: Towards Robust Edge Detection with Noisy Labels by Learning
Pixel-level Noise Transitions [119.17602768128806]
It is hard to manually label edges accurately, especially for large datasets.
This paper proposes to learn Pixel-level NoiseTransitions to model the label-corruption process.
arXiv Detail & Related papers (2023-07-26T09:45:17Z) - Unified Mask Embedding and Correspondence Learning for Self-Supervised
Video Segmentation [76.40565872257709]
We develop a unified framework which simultaneously models cross-frame dense correspondence for locally discriminative feature learning.
It is able to directly learn to perform mask-guided sequential segmentation from unlabeled videos.
Our algorithm sets state-of-the-arts on two standard benchmarks (i.e., DAVIS17 and YouTube-VOS)
arXiv Detail & Related papers (2023-03-17T16:23:36Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Superpixel-guided Iterative Learning from Noisy Labels for Medical Image
Segmentation [24.557755528031453]
We develop a robust iterative learning strategy that combines noise-aware training of segmentation network and noisy label refinement.
Experiments on two benchmarks show that our method outperforms recent state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-21T14:27:36Z) - Learning from Pixel-Level Label Noise: A New Perspective for
Semi-Supervised Semantic Segmentation [12.937770890847819]
We propose a graph based label noise detection and correction framework to deal with pixel-level noisy labels.
In particular, for the generated pixel-level noisy labels from weak supervisions by Class Activation Map (CAM), we train a clean segmentation model with strong supervisions.
Finally, we adopt a superpixel-based graph to represent the relations of spatial adjacency and semantic similarity between pixels in one image.
arXiv Detail & Related papers (2021-03-26T03:23:21Z) - Annotation-Efficient Learning for Medical Image Segmentation based on
Noisy Pseudo Labels and Adversarial Learning [12.781598229608983]
We propose an annotation-efficient learning framework for medical image segmentation.
We use an improved Cycle-Consistent Generative Adversarial Network (GAN) to learn from a set of unpaired medical images and auxiliary masks.
We validated our framework with two situations: objects with a simple shape model like optic disc in fundus images and fetal head in ultrasound images, and complex structures like lung in X-Ray images and liver in CT images.
arXiv Detail & Related papers (2020-12-29T03:22:41Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - Automatic Image Labelling at Pixel Level [21.59653873040243]
We propose an interesting learning approach to generate pixel-level image labellings automatically.
A Guided Filter Network (GFN) is first developed to learn the segmentation knowledge from a source domain.
GFN then transfers such segmentation knowledge to generate coarse object masks in the target domain.
arXiv Detail & Related papers (2020-07-15T00:34:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.