A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation
- URL: http://arxiv.org/abs/2311.18628v2
- Date: Fri, 29 Dec 2023 04:57:41 GMT
- Title: A Lightweight Clustering Framework for Unsupervised Semantic
Segmentation
- Authors: Yau Shing Jonathan Cheung, Xi Chen, Lihe Yang, Hengshuang Zhao
- Abstract summary: Unsupervised semantic segmentation aims to categorize each pixel in an image into a corresponding class without the use of annotated data.
We propose a lightweight clustering framework for unsupervised semantic segmentation.
Our framework achieves state-of-the-art results on PASCAL VOC and MS COCO datasets.
- Score: 28.907274978550493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised semantic segmentation aims to categorize each pixel in an image
into a corresponding class without the use of annotated data. It is a widely
researched area as obtaining labeled datasets is expensive. While previous
works in the field have demonstrated a gradual improvement in model accuracy,
most required neural network training. This made segmentation equally
expensive, especially when dealing with large-scale datasets. We thus propose a
lightweight clustering framework for unsupervised semantic segmentation. We
discovered that attention features of the self-supervised Vision Transformer
exhibit strong foreground-background differentiability. Therefore, clustering
can be employed to effectively separate foreground and background image
patches. In our framework, we first perform multilevel clustering across the
Dataset-level, Category-level, and Image-level, and maintain consistency
throughout. Then, the binary patch-level pseudo-masks extracted are upsampled,
refined and finally labeled. Furthermore, we provide a comprehensive analysis
of the self-supervised Vision Transformer features and a detailed comparison
between DINO and DINOv2 to justify our claims. Our framework demonstrates great
promise in unsupervised semantic segmentation and achieves state-of-the-art
results on PASCAL VOC and MS COCO datasets.
Related papers
- HGFormer: Hierarchical Grouping Transformer for Domain Generalized
Semantic Segmentation [113.6560373226501]
This work studies semantic segmentation under the domain generalization setting.
We propose a novel hierarchical grouping transformer (HGFormer) to explicitly group pixels to form part-level masks and then whole-level masks.
Experiments show that HGFormer yields more robust semantic segmentation results than per-pixel classification methods and flat grouping transformers.
arXiv Detail & Related papers (2023-05-22T13:33:41Z) - ISLE: A Framework for Image Level Semantic Segmentation Ensemble [5.137284292672375]
Conventional semantic segmentation networks require massive pixel-wise annotated labels to reach state-of-the-art prediction quality.
We propose ISLE, which employs an ensemble of the "pseudo-labels" for a given set of different semantic segmentation techniques on a class-wise level.
We reach up to 2.4% improvement over ISLE's individual components.
arXiv Detail & Related papers (2023-03-14T13:36:36Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
We propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations.
Our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
arXiv Detail & Related papers (2022-07-18T09:20:04Z) - Scaling up Multi-domain Semantic Segmentation with Sentence Embeddings [81.09026586111811]
We propose an approach to semantic segmentation that achieves state-of-the-art supervised performance when applied in a zero-shot setting.
This is achieved by replacing each class label with a vector-valued embedding of a short paragraph that describes the class.
The resulting merged semantic segmentation dataset of over 2 Million images enables training a model that achieves performance equal to that of state-of-the-art supervised methods on 7 benchmark datasets.
arXiv Detail & Related papers (2022-02-04T07:19:09Z) - TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic
Segmentation [44.75300205362518]
Unsupervised semantic segmentation aims to obtain high-level semantic representation on low-level visual features without manual annotations.
We propose the first top-down unsupervised semantic segmentation framework for fine-grained segmentation in extremely complicated scenarios.
Our results show that our top-down unsupervised segmentation is robust to both object-centric and scene-centric datasets.
arXiv Detail & Related papers (2021-12-02T18:59:03Z) - Segmenter: Transformer for Semantic Segmentation [79.9887988699159]
We introduce Segmenter, a transformer model for semantic segmentation.
We build on the recent Vision Transformer (ViT) and extend it to semantic segmentation.
It outperforms the state of the art on the challenging ADE20K dataset and performs on-par on Pascal Context and Cityscapes.
arXiv Detail & Related papers (2021-05-12T13:01:44Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
We present a framework for semi-supervised semantic segmentation, which is enhanced by self-supervised monocular depth estimation from unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset, where all three modules demonstrate significant performance gains.
arXiv Detail & Related papers (2020-12-19T21:18:03Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Unsupervised Image Classification for Deep Representation Learning [42.09716669386924]
We propose an unsupervised image classification framework without using embedding clustering.
Experiments on ImageNet dataset have been conducted to prove the effectiveness of our method.
arXiv Detail & Related papers (2020-06-20T02:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.