Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion?
- URL: http://arxiv.org/abs/2312.00084v2
- Date: Mon, 24 Jun 2024 15:44:42 GMT
- Title: Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion?
- Authors: Zhengyue Zhao, Jinhao Duan, Kaidi Xu, Chenan Wang, Rui Zhang, Zidong Du, Qi Guo, Xing Hu,
- Abstract summary: We introduce a purification method capable of removing protected perturbations while preserving the original image structure.
Experiments reveal that Stable Diffusion can effectively learn from purified images over all protective methods.
- Score: 21.75921532822961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stable Diffusion has established itself as a foundation model in generative AI artistic applications, receiving widespread research and application. Some recent fine-tuning methods have made it feasible for individuals to implant personalized concepts onto the basic Stable Diffusion model with minimal computational costs on small datasets. However, these innovations have also given rise to issues like facial privacy forgery and artistic copyright infringement. In recent studies, researchers have explored the addition of imperceptible adversarial perturbations to images to prevent potential unauthorized exploitation and infringements when personal data is used for fine-tuning Stable Diffusion. Although these studies have demonstrated the ability to protect images, it is essential to consider that these methods may not be entirely applicable in real-world scenarios. In this paper, we systematically evaluate the use of perturbations to protect images within a practical threat model. The results suggest that these approaches may not be sufficient to safeguard image privacy and copyright effectively. Furthermore, we introduce a purification method capable of removing protected perturbations while preserving the original image structure to the greatest extent possible. Experiments reveal that Stable Diffusion can effectively learn from purified images over all protective methods.
Related papers
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
New personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles.
Such a lightweight solution poses a new concern regarding whether the personalized models are trained from unauthorized data.
We introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-14T12:29:23Z) - DiffusionGuard: A Robust Defense Against Malicious Diffusion-based Image Editing [93.45507533317405]
DiffusionGuard is a robust and effective defense method against unauthorized edits by diffusion-based image editing models.
We introduce a novel objective that generates adversarial noise targeting the early stage of the diffusion process.
We also introduce a mask-augmentation technique to enhance robustness against various masks during test time.
arXiv Detail & Related papers (2024-10-08T05:19:19Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - Only My Model On My Data: A Privacy Preserving Approach Protecting one
Model and Deceiving Unauthorized Black-Box Models [11.59117790048892]
This study tackles an unexplored practical privacy preservation use case by generating human-perceivable images that maintain accurate inference by an authorized model.
Our results show that the generated images can successfully maintain the accuracy of a protected model and degrade the average accuracy of the unauthorized black-box models to 11.97%, 6.63%, and 55.51% on ImageNet, Celeba-HQ, and AffectNet datasets, respectively.
arXiv Detail & Related papers (2024-02-14T17:11:52Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
Diffusion-based image generation models can create artistic images that mimic the style of an artist or maliciously edit the original images for fake content.
Several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations.
In this work, we introduce a purification perturbation platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure.
arXiv Detail & Related papers (2023-10-30T03:33:41Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
We propose a method for detecting unauthorized data usage by planting the injected content into the protected dataset.
Specifically, we modify the protected images by adding unique contents on these images using stealthy image warping functions.
By analyzing whether the model has memorized the injected content, we can detect models that had illegally utilized the unauthorized data.
arXiv Detail & Related papers (2023-07-06T16:27:39Z) - Unlearnable Examples for Diffusion Models: Protect Data from Unauthorized Exploitation [25.55296442023984]
We propose a method, Unlearnable Diffusion Perturbation, to safeguard images from unauthorized exploitation.
This achievement holds significant importance in real-world scenarios, as it contributes to the protection of privacy and copyright against AI-generated content.
arXiv Detail & Related papers (2023-06-02T20:19:19Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
We propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners.
Experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets.
arXiv Detail & Related papers (2022-12-04T08:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.