Relevance-guided Neural Machine Translation
- URL: http://arxiv.org/abs/2312.00214v1
- Date: Thu, 30 Nov 2023 21:52:02 GMT
- Title: Relevance-guided Neural Machine Translation
- Authors: Isidora Chara Tourni, Derry Wijaya
- Abstract summary: We propose an explainability-based training approach for Neural Machine Translation (NMT)
Our results show our method can be promising, particularly when training in low-resource conditions.
- Score: 5.691028372215281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of the Transformer architecture, Neural Machine Translation
(NMT) results have shown great improvement lately. However, results in
low-resource conditions still lag behind in both bilingual and multilingual
setups, due to the limited amount of available monolingual and/or parallel
data; hence, the need for methods addressing data scarcity in an efficient, and
explainable way, is eminent. We propose an explainability-based training
approach for NMT, applied in Unsupervised and Supervised model training, for
translation of three languages of varying resources, French, Gujarati, Kazakh,
to and from English. Our results show our method can be promising, particularly
when training in low-resource conditions, outperforming simple training
baselines; though the improvement is marginal, it sets the ground for further
exploration of the approach and the parameters, and its extension to other
languages.
Related papers
- Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study [1.6819960041696331]
In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian.
Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance.
Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement.
arXiv Detail & Related papers (2024-04-12T06:16:26Z) - Boosting Unsupervised Machine Translation with Pseudo-Parallel Data [2.900810893770134]
We propose a training strategy that relies on pseudo-parallel sentence pairs mined from monolingual corpora and synthetic sentence pairs back-translated from monolingual corpora.
We reach an improvement of up to 14.5 BLEU points (English to Ukrainian) over a baseline trained on back-translated data only.
arXiv Detail & Related papers (2023-10-22T10:57:12Z) - Semi-supervised Neural Machine Translation with Consistency
Regularization for Low-Resource Languages [3.475371300689165]
This paper presents a simple yet effective method to tackle the problem for low-resource languages by augmenting high-quality sentence pairs and training NMT models in a semi-supervised manner.
Specifically, our approach combines the cross-entropy loss for supervised learning with KL Divergence for unsupervised fashion given pseudo and augmented target sentences.
Experimental results show that our approach significantly improves NMT baselines, especially on low-resource datasets with 0.46--2.03 BLEU scores.
arXiv Detail & Related papers (2023-04-02T15:24:08Z) - High-resource Language-specific Training for Multilingual Neural Machine
Translation [109.31892935605192]
We propose the multilingual translation model with the high-resource language-specific training (HLT-MT) to alleviate the negative interference.
Specifically, we first train the multilingual model only with the high-resource pairs and select the language-specific modules at the top of the decoder.
HLT-MT is further trained on all available corpora to transfer knowledge from high-resource languages to low-resource languages.
arXiv Detail & Related papers (2022-07-11T14:33:13Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
We present a novel data augmentation paradigm termed Continuous Semantic Augmentation (CsaNMT)
CsaNMT augments each training instance with an adjacency region that could cover adequate variants of literal expression under the same meaning.
arXiv Detail & Related papers (2022-04-14T08:16:28Z) - Improving Multilingual Translation by Representation and Gradient
Regularization [82.42760103045083]
We propose a joint approach to regularize NMT models at both representation-level and gradient-level.
Our results demonstrate that our approach is highly effective in both reducing off-target translation occurrences and improving zero-shot translation performance.
arXiv Detail & Related papers (2021-09-10T10:52:21Z) - Continual Mixed-Language Pre-Training for Extremely Low-Resource Neural
Machine Translation [53.22775597051498]
We present a continual pre-training framework on mBART to effectively adapt it to unseen languages.
Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline.
Our approach also boosts the performance on translation pairs where both languages are seen in the original mBART's pre-training.
arXiv Detail & Related papers (2021-05-09T14:49:07Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
We propose a multi-task learning framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data.
We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages.
arXiv Detail & Related papers (2020-10-06T06:54:12Z) - Leveraging Monolingual Data with Self-Supervision for Multilingual
Neural Machine Translation [54.52971020087777]
Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models.
Self-supervision improves zero-shot translation quality in multilingual models.
We get up to 33 BLEU on ro-en translation without any parallel data or back-translation.
arXiv Detail & Related papers (2020-05-11T00:20:33Z) - Pre-training via Leveraging Assisting Languages and Data Selection for
Neural Machine Translation [49.51278300110449]
We propose to exploit monolingual corpora of other languages to complement the scarcity of monolingual corpora for the languages of interest.
A case study of low-resource Japanese-English neural machine translation (NMT) reveals that leveraging large Chinese and French monolingual corpora can help overcome the shortage of Japanese and English monolingual corpora.
arXiv Detail & Related papers (2020-01-23T02:47:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.