Variational Self-Supervised Contrastive Learning Using Beta Divergence
- URL: http://arxiv.org/abs/2312.00824v3
- Date: Wed, 8 May 2024 14:27:20 GMT
- Title: Variational Self-Supervised Contrastive Learning Using Beta Divergence
- Authors: Mehmet Can Yavuz, Berrin Yanikoglu,
- Abstract summary: We present a contrastive self-supervised learning method which is robust to data noise, grounded in the domain of variational methods.
We demonstrate the effectiveness of the proposed method through rigorous experiments including linear evaluation and fine-tuning scenarios with multi-label datasets in the face understanding domain.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning a discriminative semantic space using unlabelled and noisy data remains unaddressed in a multi-label setting. We present a contrastive self-supervised learning method which is robust to data noise, grounded in the domain of variational methods. The method (VCL) utilizes variational contrastive learning with beta-divergence to learn robustly from unlabelled datasets, including uncurated and noisy datasets. We demonstrate the effectiveness of the proposed method through rigorous experiments including linear evaluation and fine-tuning scenarios with multi-label datasets in the face understanding domain. In almost all tested scenarios, VCL surpasses the performance of state-of-the-art self-supervised methods, achieving a noteworthy increase in accuracy.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - ProcSim: Proxy-based Confidence for Robust Similarity Learning [0.6963971634605796]
We show that popular benchmark datasets often contain numerous wrong labels, and DML methods are susceptible to them.
Intending to study the effect of realistic noise, we create an ontology of the classes in a dataset and use it to simulate semantically coherent labeling mistakes.
To train robust DML models, we propose ProcSim, a framework that assigns a confidence score to each sample using the normalized distance to its class representative.
arXiv Detail & Related papers (2023-11-01T17:17:14Z) - Self-aware and Cross-sample Prototypical Learning for Semi-supervised
Medical Image Segmentation [10.18427897663732]
Consistency learning plays a crucial role in semi-supervised medical image segmentation.
It enables the effective utilization of limited annotated data while leveraging the abundance of unannotated data.
We propose a self-aware and cross-sample prototypical learning method ( SCP-Net) to enhance the diversity of prediction in consistency learning.
arXiv Detail & Related papers (2023-05-25T16:22:04Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
An unsupervised feature selection is proposed by integrating the framework of self-paced learning and subspace learning.
The convergence of the method is proved theoretically and experimentally.
The experimental results show that the proposed method can improve the performance of clustering methods and outperform other compared algorithms.
arXiv Detail & Related papers (2021-12-14T08:28:19Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
We propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection.
Our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin.
arXiv Detail & Related papers (2021-03-29T09:27:23Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.