Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over
Adaptive Networks
- URL: http://arxiv.org/abs/2312.01299v1
- Date: Sun, 3 Dec 2023 06:18:59 GMT
- Title: Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over
Adaptive Networks
- Authors: Soheil Ashkezari-Toussi, Hadi sadoghi-Yazdi
- Abstract summary: The proposed algorithm leads to a robust estimation of an unknown parameter vector in a group of cooperative estimators.
Results show the robustness of the proposed algorithm in the presence of different noise types.
- Score: 12.266804067030455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The present study proposes incorporating non-parametric knowledge into the
diffusion least-mean-squares algorithm in the framework of a maximum a
posteriori (MAP) estimation. The proposed algorithm leads to a robust
estimation of an unknown parameter vector in a group of cooperative estimators.
Utilizing kernel density estimation and buffering some intermediate
estimations, the prior distribution and conditional likelihood of the
parameters vector in each node are calculated. Pseudo Huber loss function is
used for designing the likelihood function. Also, an error thresholding
function is defined to reduce the computational overhead as well as more
relaxation against noise, which stops the update every time an error is less
than a predefined threshold. The performance of the proposed algorithm is
examined in the stationary and non-stationary scenarios in the presence of
Gaussian and non-Gaussian noise. Results show the robustness of the proposed
algorithm in the presence of different noise types.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Generalization Error Bounds for Noisy, Iterative Algorithms via Maximal
Leakage [24.40306100502023]
We adopt an information-theoretic framework to analyze the generalization behavior of a class of noisy learning algorithms.
We show how the assumptions on the update function affect the optimal choice of the noise.
arXiv Detail & Related papers (2023-02-28T12:13:57Z) - A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random
Perturbations for Stochastic Optimization [10.820943271350442]
We present a convex gradient algorithm for minimizing a smooth objective function that is an expectation over noisy cost samples.
We also show that our algorithm avoids the ratelibria, implying convergence to local minima.
arXiv Detail & Related papers (2022-07-30T18:50:36Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - The price of ignorance: how much does it cost to forget noise structure
in low-rank matrix estimation? [21.3083877172595]
We consider the problem of estimating a rank-1 signal corrupted by structured rotationally invariant noise.
We make a step towards understanding the effect of the strong source of mismatch which is the noise statistics.
We show that this performance gap is due to an incorrect estimation of the signal norm.
arXiv Detail & Related papers (2022-05-20T07:54:21Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation
in Contaminated Gaussian Models [1.609950046042424]
Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model.
First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator.
We develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization.
The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used.
arXiv Detail & Related papers (2021-12-24T02:46:51Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie [13.476505672245603]
This paper develops theory, methods, and provably convergent algorithms for performing Bayesian inference with priors.
We introduce two algorithms: 1) -ULA (Unadjusted Langevin) Algorithm inference for Monte Carlo sampling and MMSE; and 2) quantitative-SGD (Stochastic Gradient Descent) for inference.
The algorithms are demonstrated on several problems such as image denoisering, inpainting, and denoising, where they are used for point estimation as well as for uncertainty visualisation and regularity.
arXiv Detail & Related papers (2021-03-08T12:46:53Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.