GAPS: Geometry-Aware, Physics-Based, Self-Supervised Neural Garment Draping
- URL: http://arxiv.org/abs/2312.01490v2
- Date: Thu, 14 Mar 2024 23:24:46 GMT
- Title: GAPS: Geometry-Aware, Physics-Based, Self-Supervised Neural Garment Draping
- Authors: Ruochen Chen, Liming Chen, Shaifali Parashar,
- Abstract summary: Recent neural, physics-based modeling of garment deformations allows faster and visually aesthetic results.
Material-specific parameters are used by the formulation to control the garment inextensibility.
We propose a geometry-aware garment skinning method by defining a body-garment closeness measure.
- Score: 8.60320342646772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent neural, physics-based modeling of garment deformations allows faster and visually aesthetic results as opposed to the existing methods. Material-specific parameters are used by the formulation to control the garment inextensibility. This delivers unrealistic results with physically implausible stretching. Oftentimes, the draped garment is pushed inside the body which is either corrected by an expensive post-processing, thus adding to further inconsistent stretching; or by deploying a separate training regime for each body type, restricting its scalability. Additionally, the flawed skinning process deployed by existing methods produces incorrect results on loose garments. In this paper, we introduce a geometrical constraint to the existing formulation that is collision-aware and imposes garment inextensibility wherever possible. Thus, we obtain realistic results where draped clothes stretch only while covering bigger body regions. Furthermore, we propose a geometry-aware garment skinning method by defining a body-garment closeness measure which works for all garment types, especially the loose ones.
Related papers
- AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
We introduce AniDress, a novel method for generating animatable human avatars in loose clothes using very sparse multi-view videos.
A pose-driven deformable neural radiance field conditioned on both body and garment motions is introduced, providing explicit control of both parts.
Our method is able to render natural garment dynamics that deviate highly from the body and well to generalize to both unseen views and poses.
arXiv Detail & Related papers (2024-01-27T08:48:18Z) - Towards Loose-Fitting Garment Animation via Generative Model of
Deformation Decomposition [4.627632792164547]
We develop a garment generative model based on deformation decomposition to efficiently simulate loose garment deformation without using linear skinning.
We demonstrate our method outperforms state-of-the-art data-driven alternatives through extensive experiments and show qualitative and quantitative analysis of results.
arXiv Detail & Related papers (2023-12-22T11:26:51Z) - Garment Recovery with Shape and Deformation Priors [51.41962835642731]
We propose a method that delivers realistic garment models from real-world images, regardless of garment shape or deformation.
Not only does our approach recover the garment geometry accurately, it also yields models that can be directly used by downstream applications such as animation and simulation.
arXiv Detail & Related papers (2023-11-17T07:06:21Z) - SwinGar: Spectrum-Inspired Neural Dynamic Deformation for Free-Swinging
Garments [6.821050909555717]
We present a spectrum-inspired learning-based approach for generating clothing deformations with dynamic effects and personalized details.
Our proposed method overcomes limitations by providing a unified framework that predicts dynamic behavior for different garments.
We develop a dynamic clothing deformation estimator that integrates frequency-controllable attention mechanisms with long short-term memory.
arXiv Detail & Related papers (2023-08-05T09:09:50Z) - ISP: Multi-Layered Garment Draping with Implicit Sewing Patterns [57.176642106425895]
We introduce a garment representation model that addresses limitations of current approaches.
It is faster and yields higher quality reconstructions than purely implicit surface representations.
It supports rapid editing of garment shapes and texture by modifying individual 2D panels.
arXiv Detail & Related papers (2023-05-23T14:23:48Z) - HOOD: Hierarchical Graphs for Generalized Modelling of Clothing Dynamics [84.29846699151288]
Our method is agnostic to body shape and applies to tight-fitting garments as well as loose, free-flowing clothing.
As one key contribution, we propose a hierarchical message-passing scheme that efficiently propagates stiff stretching modes.
arXiv Detail & Related papers (2022-12-14T14:24:00Z) - DIG: Draping Implicit Garment over the Human Body [56.68349332089129]
We propose an end-to-end differentiable pipeline that represents garments using implicit surfaces and learns a skinning field conditioned on shape and pose parameters of an articulated body model.
We show that our method, thanks to its end-to-end differentiability, allows to recover body and garments parameters jointly from image observations.
arXiv Detail & Related papers (2022-09-22T08:13:59Z) - SMPLicit: Topology-aware Generative Model for Clothed People [65.84665248796615]
We introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry.
In the experimental section, we demonstrate SMPLicit can be readily used for fitting 3D scans and for 3D reconstruction in images of dressed people.
arXiv Detail & Related papers (2021-03-11T18:57:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.