A Challenging Multimodal Video Summary: Simultaneously Extracting and
Generating Keyframe-Caption Pairs from Video
- URL: http://arxiv.org/abs/2312.01575v1
- Date: Mon, 4 Dec 2023 02:17:14 GMT
- Title: A Challenging Multimodal Video Summary: Simultaneously Extracting and
Generating Keyframe-Caption Pairs from Video
- Authors: Keito Kudo, Haruki Nagasawa, Jun Suzuki, Nobuyuki Shimizu
- Abstract summary: This paper proposes a practical multimodal video summarization task setting and dataset to train and evaluate the task.
The target task involves summarizing a given video into a number ofcaption pairs and displaying them in a listable format to grasp the video content quickly.
This task is useful as a practical application and presents a highly challenging problem worthy of study.
- Score: 20.579167394855197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a practical multimodal video summarization task setting
and a dataset to train and evaluate the task. The target task involves
summarizing a given video into a predefined number of keyframe-caption pairs
and displaying them in a listable format to grasp the video content quickly.
This task aims to extract crucial scenes from the video in the form of images
(keyframes) and generate corresponding captions explaining each keyframe's
situation. This task is useful as a practical application and presents a highly
challenging problem worthy of study. Specifically, achieving simultaneous
optimization of the keyframe selection performance and caption quality
necessitates careful consideration of the mutual dependence on both preceding
and subsequent keyframes and captions. To facilitate subsequent research in
this field, we also construct a dataset by expanding upon existing datasets and
propose an evaluation framework. Furthermore, we develop two baseline systems
and report their respective performance.
Related papers
- V2Xum-LLM: Cross-Modal Video Summarization with Temporal Prompt Instruction Tuning [76.26890864487933]
Video summarization aims to create short, accurate, and cohesive summaries of longer videos.
Most existing datasets are created for video-to-video summarization.
Recent efforts have been made to expand from unimodal to multimodal video summarization.
arXiv Detail & Related papers (2024-04-18T17:32:46Z) - Let's Think Frame by Frame with VIP: A Video Infilling and Prediction
Dataset for Evaluating Video Chain-of-Thought [62.619076257298204]
We motivate framing video reasoning as the sequential understanding of a small number of video reasonings.
We introduce VIP, an inference-time challenge dataset designed to explore models' reasoning capabilities through video chain-of-thought.
We benchmark GPT-4, GPT-3, and VICUNA on VIP, demonstrate the performance gap in complex video reasoning tasks, and encourage future work.
arXiv Detail & Related papers (2023-05-23T10:26:42Z) - MHSCNet: A Multimodal Hierarchical Shot-aware Convolutional Network for
Video Summarization [61.69587867308656]
We propose a multimodal hierarchical shot-aware convolutional network, denoted as MHSCNet, to enhance the frame-wise representation.
Based on the learned shot-aware representations, MHSCNet can predict the frame-level importance score in the local and global view of the video.
arXiv Detail & Related papers (2022-04-18T14:53:33Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
We introduce a novel Query-Aware Hierarchical Pointer Network for Multi-Video Summarization, termed DeepQAMVS.
DeepQAMVS is trained with reinforcement learning, incorporating rewards that capture representativeness, diversity, query-adaptability and temporal coherence.
We achieve state-of-the-art results on the MVS1K dataset, with inference time scaling linearly with the number of input video frames.
arXiv Detail & Related papers (2021-05-13T17:33:26Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
We propose a video question answering model which effectively integrates multi-modal input sources and finds the temporally relevant information to answer questions.
Our model is also comprised of dual-level attention (word/object and frame level), multi-head self-cross-integration for different sources (video and dense captions), and which pass more relevant information to gates.
We evaluate our model on the challenging TVQA dataset, where each of our model components provides significant gains, and our overall model outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2020-05-13T16:35:27Z) - Deep Multimodal Feature Encoding for Video Ordering [34.27175264084648]
We present a way to learn a compact multimodal feature representation that encodes all these modalities.
Our model parameters are learned through a proxy task of inferring the temporal ordering of a set of unordered videos in a timeline.
We analyze and evaluate the individual and joint modalities on three challenging tasks: (i) inferring the temporal ordering of a set of videos; and (ii) action recognition.
arXiv Detail & Related papers (2020-04-05T14:02:23Z) - Convolutional Hierarchical Attention Network for Query-Focused Video
Summarization [74.48782934264094]
This paper addresses the task of query-focused video summarization, which takes user's query and a long video as inputs.
We propose a method, named Convolutional Hierarchical Attention Network (CHAN), which consists of two parts: feature encoding network and query-relevance computing module.
In the encoding network, we employ a convolutional network with local self-attention mechanism and query-aware global attention mechanism to learns visual information of each shot.
arXiv Detail & Related papers (2020-01-31T04:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.