CLAMP: Contrastive LAnguage Model Prompt-tuning
- URL: http://arxiv.org/abs/2312.01629v2
- Date: Tue, 26 Mar 2024 21:58:28 GMT
- Title: CLAMP: Contrastive LAnguage Model Prompt-tuning
- Authors: Piotr Teterwak, Ximeng Sun, Bryan A. Plummer, Kate Saenko, Ser-Nam Lim,
- Abstract summary: We show that large language models can achieve good image classification performance when adapted this way.
Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model.
- Score: 89.96914454453791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have emerged as powerful general-purpose interfaces for many machine learning problems. Recent work has adapted LLMs to generative visual tasks like image captioning, visual question answering, and visual chat, using a relatively small amount of instruction-tuning data. In this paper, we explore whether modern LLMs can also be adapted to classifying an image into a set of categories. First, we evaluate multimodal LLMs that are tuned for generative tasks on zero-shot image classification and find that their performance is far below that of specialized models like CLIP. We then propose an approach for light fine-tuning of LLMs using the same contrastive image-caption matching objective as CLIP. Our results show that LLMs can, indeed, achieve good image classification performance when adapted this way. Our approach beats state-of-the-art mLLMs by 13% and slightly outperforms contrastive learning with a custom text model, while also retaining the LLM's generative abilities. LLM initialization appears to particularly help classification in domains under-represented in the visual pre-training data.
Related papers
- HoVLE: Unleashing the Power of Monolithic Vision-Language Models with Holistic Vision-Language Embedding [91.0552157725366]
This paper presents a novel high-performance monolithic VLM named HoVLE.
It converts visual and textual inputs into a shared space, allowing LLMs to process images in the same way as texts.
Our experiments show that HoVLE achieves performance close to leading compositional models on various benchmarks.
arXiv Detail & Related papers (2024-12-20T18:59:59Z) - AIM: Adaptive Inference of Multi-Modal LLMs via Token Merging and Pruning [19.68349294206012]
We propose a training-free adaptive inference method for multi-modal LLMs.
With a minimalist design, our method can be applied to both video and image LLMs.
Under a similar computational cost, our method outperforms the state-of-the-art methods in long video understanding.
arXiv Detail & Related papers (2024-12-04T11:47:57Z) - LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation [60.02145113467427]
This work introduces a fine-tuning approach that integrates large language models with the pretrained CLIP visual encoder.
To address the challenge of LLMs' autoregressive nature, we propose a caption-to-caption contrastive learning framework.
Our method achieves substantial performance gains on various downstream tasks.
arXiv Detail & Related papers (2024-11-07T18:59:16Z) - Large Language Models are Good Prompt Learners for Low-Shot Image Classification [12.053713356249695]
We propose LLaMP, Large Language Models as Prompt learners, that produces adaptive prompts for the CLIP text encoder.
Experiments show that, compared with other state-of-the-art prompt learning methods, LLaMP yields better performance on both zero-shot generalization and few-shot image classification.
arXiv Detail & Related papers (2023-12-07T06:43:34Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
We demonstrate that Multi-modal Large Language Models (MLLMs) can enhance visual-language representation learning.
Our approach is simple, utilizing MLLMs to extend multiple diverse captions for each image.
We propose "text shearing" to maintain the quality and availability of extended captions.
arXiv Detail & Related papers (2023-11-30T18:05:52Z) - LLaFS: When Large Language Models Meet Few-Shot Segmentation [32.86287519276783]
We propose LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation.
In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased information from the annotated support images, LLaFS directly uses the LLM to segment images in a few-shot manner.
LLaFS achieves state-of-the-art results on multiple datasets, showing the potential of using LLMs for few-shot computer vision tasks.
arXiv Detail & Related papers (2023-11-28T16:31:27Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - Waffling around for Performance: Visual Classification with Random Words
and Broad Concepts [121.60918966567657]
WaffleCLIP is a framework for zero-shot visual classification which simply replaces LLM-generated descriptors with random character and word descriptors.
We conduct an extensive experimental study on the impact and shortcomings of additional semantics introduced with LLM-generated descriptors.
arXiv Detail & Related papers (2023-06-12T17:59:48Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.