Customize your NeRF: Adaptive Source Driven 3D Scene Editing via
Local-Global Iterative Training
- URL: http://arxiv.org/abs/2312.01663v1
- Date: Mon, 4 Dec 2023 06:25:06 GMT
- Title: Customize your NeRF: Adaptive Source Driven 3D Scene Editing via
Local-Global Iterative Training
- Authors: Runze He, Shaofei Huang, Xuecheng Nie, Tianrui Hui, Luoqi Liu, Jiao
Dai, Jizhong Han, Guanbin Li, Si Liu
- Abstract summary: We propose a CustomNeRF model that unifies a text description or a reference image as the editing prompt.
To tackle the first challenge, we propose a Local-Global Iterative Editing (LGIE) training scheme that alternates between foreground region editing and full-image editing.
For the second challenge, we also design a class-guided regularization that exploits class priors within the generation model to alleviate the inconsistency problem.
- Score: 61.984277261016146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we target the adaptive source driven 3D scene editing task by
proposing a CustomNeRF model that unifies a text description or a reference
image as the editing prompt. However, obtaining desired editing results
conformed with the editing prompt is nontrivial since there exist two
significant challenges, including accurate editing of only foreground regions
and multi-view consistency given a single-view reference image. To tackle the
first challenge, we propose a Local-Global Iterative Editing (LGIE) training
scheme that alternates between foreground region editing and full-image
editing, aimed at foreground-only manipulation while preserving the background.
For the second challenge, we also design a class-guided regularization that
exploits class priors within the generation model to alleviate the
inconsistency problem among different views in image-driven editing. Extensive
experiments show that our CustomNeRF produces precise editing results under
various real scenes for both text- and image-driven settings.
Related papers
- UIP2P: Unsupervised Instruction-based Image Editing via Cycle Edit Consistency [69.33072075580483]
We propose an unsupervised model for instruction-based image editing that eliminates the need for ground-truth edited images during training.
Our method addresses these challenges by introducing a novel editing mechanism called Cycle Edit Consistency ( CEC)
CEC applies forward and backward edits in one training step and enforces consistency in image and attention spaces.
arXiv Detail & Related papers (2024-12-19T18:59:58Z) - CTRL-D: Controllable Dynamic 3D Scene Editing with Personalized 2D Diffusion [13.744253074367885]
We introduce a novel framework that first fine-tunes the InstructPix2Pix model, followed by a two-stage optimization of the scene.
Our approach enables consistent and precise local edits without the need for tracking desired editing regions.
Compared to state-of-the-art methods, our approach offers more flexible and controllable local scene editing.
arXiv Detail & Related papers (2024-12-02T18:38:51Z) - AnyEdit: Mastering Unified High-Quality Image Editing for Any Idea [88.79769371584491]
We present AnyEdit, a comprehensive multi-modal instruction editing dataset.
We ensure the diversity and quality of the AnyEdit collection through three aspects: initial data diversity, adaptive editing process, and automated selection of editing results.
Experiments on three benchmark datasets show that AnyEdit consistently boosts the performance of diffusion-based editing models.
arXiv Detail & Related papers (2024-11-24T07:02:56Z) - GenVideo: One-shot Target-image and Shape Aware Video Editing using T2I Diffusion Models [2.362412515574206]
We propose "GenVideo" for editing videos leveraging target-image aware T2I models.
Our approach handles edits with target objects of varying shapes and sizes while maintaining the temporal consistency of the edit.
arXiv Detail & Related papers (2024-04-18T23:25:27Z) - Optimisation-Based Multi-Modal Semantic Image Editing [58.496064583110694]
We propose an inference-time editing optimisation to accommodate multiple editing instruction types.
By allowing to adjust the influence of each loss function, we build a flexible editing solution that can be adjusted to user preferences.
We evaluate our method using text, pose and scribble edit conditions, and highlight our ability to achieve complex edits.
arXiv Detail & Related papers (2023-11-28T15:31:11Z) - Object-aware Inversion and Reassembly for Image Editing [61.19822563737121]
We propose Object-aware Inversion and Reassembly (OIR) to enable object-level fine-grained editing.
We use our search metric to find the optimal inversion step for each editing pair when editing an image.
Our method achieves superior performance in editing object shapes, colors, materials, categories, etc., especially in multi-object editing scenarios.
arXiv Detail & Related papers (2023-10-18T17:59:02Z) - Editing 3D Scenes via Text Prompts without Retraining [80.57814031701744]
DN2N is a text-driven editing method that allows for the direct acquisition of a NeRF model with universal editing capabilities.
Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images.
Our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer.
arXiv Detail & Related papers (2023-09-10T02:31:50Z) - SINE: Semantic-driven Image-based NeRF Editing with Prior-guided Editing
Field [37.8162035179377]
We present a novel semantic-driven NeRF editing approach, which enables users to edit a neural radiance field with a single image.
To achieve this goal, we propose a prior-guided editing field to encode fine-grained geometric and texture editing in 3D space.
Our method achieves photo-realistic 3D editing using only a single edited image, pushing the bound of semantic-driven editing in 3D real-world scenes.
arXiv Detail & Related papers (2023-03-23T13:58:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.