Object Recognition as Next Token Prediction
- URL: http://arxiv.org/abs/2312.02142v4
- Date: Sun, 31 Mar 2024 18:11:18 GMT
- Title: Object Recognition as Next Token Prediction
- Authors: Kaiyu Yue, Bor-Chun Chen, Jonas Geiping, Hengduo Li, Tom Goldstein, Ser-Nam Lim,
- Abstract summary: We present an approach to pose object recognition as next token prediction.
The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels.
- Score: 99.40793702627396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
Related papers
- Tokenization as Finite-State Transduction [24.19959327497118]
We introduce a finite-state framework which can efficiently encode all possible tokenizations of a regular language.
We show that Byte-Pair.
Match (BPE) and MaxPiece (WordPiece) fit within this framework.
An application of this is to guided generation, where the outputs of a language model are constrained to match some pattern.
arXiv Detail & Related papers (2024-10-21T07:10:07Z) - ElasticTok: Adaptive Tokenization for Image and Video [109.75935878130582]
We introduce ElasticTok, a method that conditions on prior frames to adaptively encode a frame into a variable number of tokens.
During inference, ElasticTok can dynamically allocate tokens when needed.
Our evaluations on images and video demonstrate the effectiveness of our approach in efficient token usage.
arXiv Detail & Related papers (2024-10-10T20:54:15Z) - Seeing the Image: Prioritizing Visual Correlation by Contrastive Alignment [40.63340635482609]
Existing image-text modality alignment in Vision Language Models (VLMs) treats each text token equally in an autoregressive manner.
We advocate for assigning distinct contributions for each text token based on its visual correlation.
We introduce Contrastive ALignment (CAL), a simple yet effective re-weighting strategy that prioritizes training visually correlated tokens.
arXiv Detail & Related papers (2024-05-28T06:44:13Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnify is a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction.
Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution.
This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date.
arXiv Detail & Related papers (2024-05-27T05:45:51Z) - Don't Look into the Dark: Latent Codes for Pluralistic Image Inpainting [8.572133295533643]
We present a method for large-mask pluralistic image inpainting based on the generative framework of discrete latent codes.
Our method learns latent priors, discretized as tokens, by only performing computations at the visible locations of the image.
arXiv Detail & Related papers (2024-03-27T01:28:36Z) - Tokenize Anything via Prompting [65.93061853439512]
We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything.
We train a generalizable model with massive segmentation masks, eg, SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters.
We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context.
arXiv Detail & Related papers (2023-12-14T17:01:02Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs)
We identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies.
We propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token.
arXiv Detail & Related papers (2022-10-12T17:54:32Z) - Fast End-to-End Speech Recognition via a Non-Autoregressive Model and
Cross-Modal Knowledge Transferring from BERT [72.93855288283059]
We propose a non-autoregressive speech recognition model called LASO (Listen Attentively, and Spell Once)
The model consists of an encoder, a decoder, and a position dependent summarizer (PDS)
arXiv Detail & Related papers (2021-02-15T15:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.