Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
- URL: http://arxiv.org/abs/2312.02145v2
- Date: Wed, 3 Apr 2024 14:14:18 GMT
- Title: Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation
- Authors: Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, Konrad Schindler,
- Abstract summary: We introduce Marigold, a method for affine-invariant monocular depth estimation.
It can be fine-tuned in a couple of days on a single GPU using only synthetic training data.
It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases.
- Score: 20.230238670888454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular depth estimation is a fundamental computer vision task. Recovering 3D depth from a single image is geometrically ill-posed and requires scene understanding, so it is not surprising that the rise of deep learning has led to a breakthrough. The impressive progress of monocular depth estimators has mirrored the growth in model capacity, from relatively modest CNNs to large Transformer architectures. Still, monocular depth estimators tend to struggle when presented with images with unfamiliar content and layout, since their knowledge of the visual world is restricted by the data seen during training, and challenged by zero-shot generalization to new domains. This motivates us to explore whether the extensive priors captured in recent generative diffusion models can enable better, more generalizable depth estimation. We introduce Marigold, a method for affine-invariant monocular depth estimation that is derived from Stable Diffusion and retains its rich prior knowledge. The estimator can be fine-tuned in a couple of days on a single GPU using only synthetic training data. It delivers state-of-the-art performance across a wide range of datasets, including over 20% performance gains in specific cases. Project page: https://marigoldmonodepth.github.io.
Related papers
- MetricGold: Leveraging Text-To-Image Latent Diffusion Models for Metric Depth Estimation [9.639797094021988]
MetricGold is a novel approach that harnesses generative diffusion model's rich priors to improve metric depth estimation.
Our experiments demonstrate robust generalization across diverse datasets, producing sharper and higher quality metric depth estimates.
arXiv Detail & Related papers (2024-11-16T20:59:01Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input.
We plan to do intrinsic camera parameters during training and apply weather augmentations to further generalize our model.
arXiv Detail & Related papers (2023-04-14T07:14:08Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - Towards Accurate Reconstruction of 3D Scene Shape from A Single
Monocular Image [91.71077190961688]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then exploits 3D point cloud data to predict the depth shift and the camera's focal length that allow us to recover 3D scene shapes.
We test our depth model on nine unseen datasets and achieve state-of-the-art performance on zero-shot evaluation.
arXiv Detail & Related papers (2022-08-28T16:20:14Z) - Virtual Normal: Enforcing Geometric Constraints for Accurate and Robust
Depth Prediction [87.08227378010874]
We show the importance of the high-order 3D geometric constraints for depth prediction.
By designing a loss term that enforces a simple geometric constraint, we significantly improve the accuracy and robustness of monocular depth estimation.
We show state-of-the-art results of learning metric depth on NYU Depth-V2 and KITTI.
arXiv Detail & Related papers (2021-03-07T00:08:21Z) - Learning to Recover 3D Scene Shape from a Single Image [98.20106822614392]
We propose a two-stage framework that first predicts depth up to an unknown scale and shift from a single monocular image.
We then use 3D point cloud encoders to predict the missing depth shift and focal length that allow us to recover a realistic 3D scene shape.
arXiv Detail & Related papers (2020-12-17T02:35:13Z) - Don't Forget The Past: Recurrent Depth Estimation from Monocular Video [92.84498980104424]
We put three different types of depth estimation into a common framework.
Our method produces a time series of depth maps.
It can be applied to monocular videos only or be combined with different types of sparse depth patterns.
arXiv Detail & Related papers (2020-01-08T16:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.