GNN2R: Weakly-Supervised Rationale-Providing Question Answering over
Knowledge Graphs
- URL: http://arxiv.org/abs/2312.02317v3
- Date: Sat, 20 Jan 2024 21:16:09 GMT
- Title: GNN2R: Weakly-Supervised Rationale-Providing Question Answering over
Knowledge Graphs
- Authors: Ruijie Wang, Luca Rossetto, Michael Cochez, Abraham Bernstein
- Abstract summary: We propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to solve this issue.
GNN2R can provide both final answers and reasoning subgraphs as a rationale behind final answers efficiently with only weak supervision.
- Score: 13.496565392976292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current methods for multi-hop question answering (QA) over knowledge
graphs (KGs) only provide final conclusive answers without explanations, such
as a set of KG entities that is difficult for normal users to review and
comprehend. This issue severely limits the application of KG-based QA in
real-world scenarios. However, it is non-trivial to solve due to two
challenges: First, annotations of reasoning chains of multi-hop questions,
which could serve as supervision for explanation generation, are usually
lacking. Second, it is difficult to maintain high efficiency when explicit KG
triples need to be retrieved to generate explanations. In this paper, we
propose a novel Graph Neural Network-based Two-Step Reasoning model (GNN2R) to
solve this issue. GNN2R can provide both final answers and reasoning subgraphs
as a rationale behind final answers efficiently with only weak supervision that
is available through question-final answer pairs. We extensively evaluated
GNN2R with detailed analyses in experiments. The results demonstrate that, in
terms of effectiveness, efficiency, and quality of generated explanations,
GNN2R outperforms existing state-of-the-art methods that are applicable to this
task. Our code and pre-trained models are available at
https://github.com/ruijie-wang-uzh/GNN2R.
Related papers
- GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning [21.057810495833063]
We introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style.
In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information.
Experiments show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks.
arXiv Detail & Related papers (2024-05-30T15:14:24Z) - View-based Explanations for Graph Neural Networks [27.19300566616961]
We propose GVEX, a novel paradigm that generates Graph Views for EXplanation.
We show that this strategy provides an approximation ratio of 1/2.
Our second algorithm performs a single-pass to an input node stream in batches to incrementally maintain explanation views.
arXiv Detail & Related papers (2024-01-04T06:20:24Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - Neural-Symbolic Models for Logical Queries on Knowledge Graphs [17.290758383645567]
We propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds.
GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets.
Experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries.
arXiv Detail & Related papers (2022-05-16T18:39:04Z) - Improving Question Answering over Knowledge Graphs Using Graph
Summarization [0.2752817022620644]
Key idea is to represent questions and entities of a Knowledge Graph as low-dimensional embeddings.
We propose a graph summarization technique using Recurrent Convolutional Neural Network (RCNN) and GCN.
The proposed graph summarization technique can be used to tackle the issue that KGQAs cannot answer questions with an uncertain number of answers.
arXiv Detail & Related papers (2022-03-25T10:57:10Z) - Task-Agnostic Graph Explanations [50.17442349253348]
Graph Neural Networks (GNNs) have emerged as powerful tools to encode graph structured data.
Existing learning-based GNN explanation approaches are task-specific in training.
We propose a Task-Agnostic GNN Explainer (TAGE) trained under self-supervision with no knowledge of downstream tasks.
arXiv Detail & Related papers (2022-02-16T21:11:47Z) - Graph-Based Tri-Attention Network for Answer Ranking in CQA [56.42018099917321]
We propose a novel graph-based tri-attention network, namely GTAN, to generate answer ranking scores.
Experiments on three real-world CQA datasets demonstrate GTAN significantly outperforms state-of-the-art answer ranking methods.
arXiv Detail & Related papers (2021-03-05T10:40:38Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - Toward Subgraph-Guided Knowledge Graph Question Generation with Graph
Neural Networks [53.58077686470096]
Knowledge graph (KG) question generation (QG) aims to generate natural language questions from KGs and target answers.
In this work, we focus on a more realistic setting where we aim to generate questions from a KG subgraph and target answers.
arXiv Detail & Related papers (2020-04-13T15:43:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.