DeepPointMap: Advancing LiDAR SLAM with Unified Neural Descriptors
- URL: http://arxiv.org/abs/2312.02684v1
- Date: Tue, 5 Dec 2023 11:40:41 GMT
- Title: DeepPointMap: Advancing LiDAR SLAM with Unified Neural Descriptors
- Authors: Xiaze Zhang, Ziheng Ding, Qi Jing, Yuejie Zhang, Wenchao Ding, Rui
Feng
- Abstract summary: We propose a unified architecture, DeepPointMap, achieving excellent preference on both aspects.
We utilize neural network to extract highly representative and sparse neural descriptors from point clouds.
We showcase the versatility of our framework by extending it to more challenging multi-agent collaborative SLAM.
- Score: 17.664439455504592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point clouds have shown significant potential in various domains, including
Simultaneous Localization and Mapping (SLAM). However, existing approaches
either rely on dense point clouds to achieve high localization accuracy or use
generalized descriptors to reduce map size. Unfortunately, these two aspects
seem to conflict with each other. To address this limitation, we propose a
unified architecture, DeepPointMap, achieving excellent preference on both
aspects. We utilize neural network to extract highly representative and sparse
neural descriptors from point clouds, enabling memory-efficient map
representation and accurate multi-scale localization tasks (e.g., odometry and
loop-closure). Moreover, we showcase the versatility of our framework by
extending it to more challenging multi-agent collaborative SLAM. The promising
results obtained in these scenarios further emphasize the effectiveness and
potential of our approach.
Related papers
- Pyramid Feature Attention Network for Monocular Depth Prediction [8.615717738037823]
We propose a Pyramid Feature Attention Network (PFANet) to improve the high-level context features and low-level spatial features.
Our method outperforms state-of-the-art methods on the KITTI dataset.
arXiv Detail & Related papers (2024-03-03T08:33:23Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
We develop a pipeline that utilizes a diffusion model to generate extensive training data.
We are the first to generate images conditioned on a location dot map with a diffusion model.
Our proposed counting loss for the diffusion model effectively minimizes the discrepancies between the location dot map and the crowd images generated.
arXiv Detail & Related papers (2024-01-25T07:28:22Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
We propose a dense neural simultaneous localization and mapping (SLAM) approach for monocular RGBD input.
We demonstrate that both tracking and mapping can be performed with the same point-based neural scene representation.
arXiv Detail & Related papers (2023-04-09T16:48:26Z) - Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis [118.30840667784206]
Key issue for point cloud data processing is extracting useful information from local regions.
Previous works ignore the relation between edges in local regions, which encodes the local shape information.
This paper proposes a novel Adaptive Edge-to-Edge Interaction Learning module.
arXiv Detail & Related papers (2022-11-20T07:10:14Z) - Redesigning Multi-Scale Neural Network for Crowd Counting [68.674652984003]
We introduce a hierarchical mixture of density experts, which hierarchically merges multi-scale density maps for crowd counting.
Within the hierarchical structure, an expert competition and collaboration scheme is presented to encourage contributions from all scales.
Experiments show that our method achieves the state-of-the-art performance on five public datasets.
arXiv Detail & Related papers (2022-08-04T21:49:29Z) - Multi-scale Network with Attentional Multi-resolution Fusion for Point
Cloud Semantic Segmentation [2.964101313270572]
We present a comprehensive point cloud semantic segmentation network that aggregates both local and global multi-scale information.
We introduce an Angle Correlation Point Convolution module to effectively learn the local shapes of points.
Third, inspired by HRNet which has excellent performance on 2D image vision tasks, we build an HRNet customized for point cloud to learn global multi-scale context.
arXiv Detail & Related papers (2022-06-27T21:03:33Z) - Global-Local Path Networks for Monocular Depth Estimation with Vertical
CutDepth [24.897377434844266]
We propose a novel structure and training strategy for monocular depth estimation.
We deploy a hierarchical transformer encoder to capture and convey the global context, and design a lightweight yet powerful decoder.
Our network achieves state-of-the-art performance over the challenging depth dataset NYU Depth V2.
arXiv Detail & Related papers (2022-01-19T06:37:21Z) - NICE-SLAM: Neural Implicit Scalable Encoding for SLAM [112.6093688226293]
NICE-SLAM is a dense SLAM system that incorporates multi-level local information by introducing a hierarchical scene representation.
Compared to recent neural implicit SLAM systems, our approach is more scalable, efficient, and robust.
arXiv Detail & Related papers (2021-12-22T18:45:44Z) - Exploiting latent representation of sparse semantic layers for improved
short-term motion prediction with Capsule Networks [0.12183405753834559]
This paper explores use of Capsule Networks (CapsNets) in the context of learning a hierarchical representation of sparse semantic layers corresponding to small regions of the High-Definition (HD) map.
By using an architecture based on CapsNets the model is able to retain hierarchical relationships between detected features within images whilst also preventing loss of spatial data often caused by the pooling operation.
We show that our model achieves significant improvement over recently published works on prediction, whilst drastically reducing the overall size of the network.
arXiv Detail & Related papers (2021-03-02T11:13:43Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
We propose MNEW, including multi-domain neighborhood embedding, and attention weighting based on their geometry distance, feature similarity, and neighborhood sparsity.
MNEW achieves the top performance for sparse point clouds, which is important to the application of LiDAR-based automated driving perception.
arXiv Detail & Related papers (2020-04-05T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.