SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
- URL: http://arxiv.org/abs/2312.02976v2
- Date: Wed, 7 Aug 2024 18:11:51 GMT
- Title: SPOC: Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
- Authors: Kiana Ehsani, Tanmay Gupta, Rose Hendrix, Jordi Salvador, Luca Weihs, Kuo-Hao Zeng, Kunal Pratap Singh, Yejin Kim, Winson Han, Alvaro Herrasti, Ranjay Krishna, Dustin Schwenk, Eli VanderBilt, Aniruddha Kembhavi,
- Abstract summary: We show that imitating shortest-path planners in simulation produces agents that can proficiently navigate, explore, and manipulate objects in both simulation and in the real world using only RGB sensors (no depth map or GPS coordinates)
This surprising result is enabled by our end-to-end, transformer-based, SPOC architecture, powerful visual encoders paired with extensive image augmentation.
- Score: 46.02807945490169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) with dense rewards and imitation learning (IL) with human-generated trajectories are the most widely used approaches for training modern embodied agents. RL requires extensive reward shaping and auxiliary losses and is often too slow and ineffective for long-horizon tasks. While IL with human supervision is effective, collecting human trajectories at scale is extremely expensive. In this work, we show that imitating shortest-path planners in simulation produces agents that, given a language instruction, can proficiently navigate, explore, and manipulate objects in both simulation and in the real world using only RGB sensors (no depth map or GPS coordinates). This surprising result is enabled by our end-to-end, transformer-based, SPOC architecture, powerful visual encoders paired with extensive image augmentation, and the dramatic scale and diversity of our training data: millions of frames of shortest-path-expert trajectories collected inside approximately 200,000 procedurally generated houses containing 40,000 unique 3D assets. Our models, data, training code, and newly proposed 10-task benchmarking suite CHORES are available in https://spoc-robot.github.io.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - ReProHRL: Towards Multi-Goal Navigation in the Real World using
Hierarchical Agents [1.3194749469702445]
We present Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning.
We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world.
For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera.
arXiv Detail & Related papers (2023-08-17T02:23:59Z) - Rethinking Closed-loop Training for Autonomous Driving [82.61418945804544]
We present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents.
We propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead.
Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines.
arXiv Detail & Related papers (2023-06-27T17:58:39Z) - Train a Real-world Local Path Planner in One Hour via Partially
Decoupled Reinforcement Learning and Vectorized Diversity [8.068886870457561]
Deep Reinforcement Learning (DRL) has exhibited efficacy in resolving the Local Path Planning (LPP) problem.
Such application in the real world is immensely limited due to the deficient training efficiency and generalization capability of DRL.
A solution named Color is proposed, which consists of an Actor-Sharer-Learner (ASL) training framework and a mobile robot-oriented simulator Sparrow.
arXiv Detail & Related papers (2023-05-07T03:39:31Z) - A New Path: Scaling Vision-and-Language Navigation with Synthetic
Instructions and Imitation Learning [70.14372215250535]
Recent studies in Vision-and-Language Navigation (VLN) train RL agents to execute natural-language navigation instructions in photorealistic environments.
Given the scarcity of human instruction data and limited diversity in the training environments, these agents still struggle with complex language grounding and spatial language understanding.
We take 500+ indoor environments captured in densely-sampled 360 degree panoramas, construct navigation trajectories through these panoramas, and generate a visually-grounded instruction for each trajectory.
The resulting dataset of 4.2M instruction-trajectory pairs is two orders of magnitude larger than existing human-annotated datasets.
arXiv Detail & Related papers (2022-10-06T17:59:08Z) - Parallel Reinforcement Learning Simulation for Visual Quadrotor
Navigation [4.597465975849579]
Reinforcement learning (RL) is an agent-based approach for teaching robots to navigate within the physical world.
We present a simulation framework, built on AirSim, which provides efficient parallel training.
Building on this framework, Ape-X is modified to incorporate decentralised training of AirSim environments.
arXiv Detail & Related papers (2022-09-22T15:27:42Z) - Nocturne: a scalable driving benchmark for bringing multi-agent learning
one step closer to the real world [11.069445871185744]
We introduce textitNocturne, a new 2D driving simulator for investigating multi-agent coordination under partial observability.
The focus of Nocturne is to enable research into inference and theory of mind in real-world multi-agent settings without the computational overhead of computer vision and feature extraction from images.
arXiv Detail & Related papers (2022-06-20T16:51:44Z) - ProcTHOR: Large-Scale Embodied AI Using Procedural Generation [55.485985317538194]
ProcTHOR is a framework for procedural generation of Embodied AI environments.
We demonstrate state-of-the-art results across 6 embodied AI benchmarks for navigation, rearrangement, and arm manipulation.
arXiv Detail & Related papers (2022-06-14T17:09:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.