The mechanistic basis of data dependence and abrupt learning in an
in-context classification task
- URL: http://arxiv.org/abs/2312.03002v1
- Date: Sun, 3 Dec 2023 20:53:41 GMT
- Title: The mechanistic basis of data dependence and abrupt learning in an
in-context classification task
- Authors: Gautam Reddy
- Abstract summary: We show that specific distributional properties inherent in language control the trade-off or simultaneous appearance of two forms of learning.
In-context learning is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning.
We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL.
- Score: 0.3626013617212666
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transformer models exhibit in-context learning: the ability to accurately
predict the response to a novel query based on illustrative examples in the
input sequence. In-context learning contrasts with traditional in-weights
learning of query-output relationships. What aspects of the training data
distribution and architecture favor in-context vs in-weights learning? Recent
work has shown that specific distributional properties inherent in language,
such as burstiness, large dictionaries and skewed rank-frequency distributions,
control the trade-off or simultaneous appearance of these two forms of
learning. We first show that these results are recapitulated in a minimal
attention-only network trained on a simplified dataset. In-context learning
(ICL) is driven by the abrupt emergence of an induction head, which
subsequently competes with in-weights learning. By identifying progress
measures that precede in-context learning and targeted experiments, we
construct a two-parameter model of an induction head which emulates the full
data distributional dependencies displayed by the attention-based network. A
phenomenological model of induction head formation traces its abrupt emergence
to the sequential learning of three nested logits enabled by an intrinsic
curriculum. We propose that the sharp transitions in attention-based networks
arise due to a specific chain of multi-layer operations necessary to achieve
ICL, which is implemented by nested nonlinearities sequentially learned during
training.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Toward Understanding In-context vs. In-weight Learning [50.24035812301655]
We identify simplified distributional properties that give rise to the emergence and disappearance of in-context learning.
We then extend the study to a full large language model, showing how fine-tuning on various collections of natural language prompts can elicit similar in-context and in-weight learning behaviour.
arXiv Detail & Related papers (2024-10-30T14:09:00Z) - A distributional simplicity bias in the learning dynamics of transformers [50.91742043564049]
We show that transformers, trained on natural language data, also display a simplicity bias.
Specifically, they sequentially learn many-body interactions among input tokens, reaching a saturation point in the prediction error for low-degree interactions.
This approach opens up the possibilities of studying how interactions of different orders in the data affect learning, in natural language processing and beyond.
arXiv Detail & Related papers (2024-10-25T15:39:34Z) - Dynamics of Supervised and Reinforcement Learning in the Non-Linear Perceptron [3.069335774032178]
We use a dataset-process approach to derive flow equations describing learning.
We characterize the effects of the learning rule (supervised or reinforcement learning, SL/RL) and input-data distribution on the perceptron's learning curve.
This approach points a way toward analyzing learning dynamics for more-complex circuit architectures.
arXiv Detail & Related papers (2024-09-05T17:58:28Z) - A Theory of Emergent In-Context Learning as Implicit Structure Induction [8.17811111226145]
Scaling large language models leads to an emergent capacity to learn in-context from example demonstrations.
We argue that in-context learning relies on recombination of compositional operations found in natural language data.
We show how in-context learning is supported by a representation of the input's compositional structure.
arXiv Detail & Related papers (2023-03-14T15:24:05Z) - Explaining, Evaluating and Enhancing Neural Networks' Learned
Representations [2.1485350418225244]
We show how explainability can be an aid, rather than an obstacle, towards better and more efficient representations.
We employ such attributions to define two novel scores for evaluating the informativeness and the disentanglement of latent embeddings.
We show that adopting our proposed scores as constraints during the training of a representation learning task improves the downstream performance of the model.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - An Explanation of In-context Learning as Implicit Bayesian Inference [117.19809377740188]
We study the role of the pretraining distribution on the emergence of in-context learning.
We prove that in-context learning occurs implicitly via Bayesian inference of the latent concept.
We empirically find that scaling model size improves in-context accuracy even when the pretraining loss is the same.
arXiv Detail & Related papers (2021-11-03T09:12:33Z) - Local and non-local dependency learning and emergence of rule-like
representations in speech data by Deep Convolutional Generative Adversarial
Networks [0.0]
This paper argues that training GANs on local and non-local dependencies in speech data offers insights into how deep neural networks discretize continuous data.
arXiv Detail & Related papers (2020-09-27T00:02:34Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
We propose an auxiliary training objective that improves the generalization capabilities of neural networks.
We use pairs of minimally-different examples with different labels, a.k.a counterfactual or contrasting examples, which provide a signal indicative of the underlying causal structure of the task.
Models trained with this technique demonstrate improved performance on out-of-distribution test sets.
arXiv Detail & Related papers (2020-04-20T02:47:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.