HHAvatar: Gaussian Head Avatar with Dynamic Hairs
- URL: http://arxiv.org/abs/2312.03029v3
- Date: Wed, 20 Nov 2024 12:32:13 GMT
- Title: HHAvatar: Gaussian Head Avatar with Dynamic Hairs
- Authors: Zhanfeng Liao, Yuelang Xu, Zhe Li, Qijing Li, Boyao Zhou, Ruifeng Bai, Di Xu, Hongwen Zhang, Yebin Liu,
- Abstract summary: We proposeAvatar represented by controllable 3D Gaussians for high-fidelity head avatar with dynamic hair modeling.
Our approach outperforms other state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering quality at 2K resolution.
- Score: 27.20228210350169
- License:
- Abstract: Creating high-fidelity 3D head avatars has always been a research hotspot, but it remains a great challenge under lightweight sparse view setups. In this paper, we propose HHAvatar represented by controllable 3D Gaussians for high-fidelity head avatar with dynamic hair modeling. We first use 3D Gaussians to represent the appearance of the head, and then jointly optimize neutral 3D Gaussians and a fully learned MLP-based deformation field to capture complex expressions. The two parts benefit each other, thereby our method can model fine-grained dynamic details while ensuring expression accuracy. Furthermore, we devise a well-designed geometry-guided initialization strategy based on implicit SDF and Deep Marching Tetrahedra for the stability and convergence of the training procedure. To address the problem of dynamic hair modeling, we introduce a hybrid head model into our avatar representation based Gaussian Head Avatar and a training method that considers timing information and an occlusion perception module to model the non-rigid motion of hair. Experiments show that our approach outperforms other state-of-the-art sparse-view methods, achieving ultra high-fidelity rendering quality at 2K resolution even under exaggerated expressions and driving hairs reasonably with the motion of the head
Related papers
- Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
We introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result.
For personalizing, we propose learnable expression-aware rectification blendmaps, ensuring rapid convergence without the reliance on neural networks.
It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods.
arXiv Detail & Related papers (2024-09-23T00:11:30Z) - GPHM: Gaussian Parametric Head Model for Monocular Head Avatar Reconstruction [47.113910048252805]
High-fidelity 3D human head avatars are crucial for applications in VR/AR, digital human, and film production.
Recent advances have leveraged morphable face models to generate animated head avatars, representing varying identities and expressions.
We introduce 3D Gaussian Parametric Head Model, which employs 3D Gaussians to accurately represent the complexities of the human head.
arXiv Detail & Related papers (2024-07-21T06:03:11Z) - MonoGaussianAvatar: Monocular Gaussian Point-based Head Avatar [44.125711148560605]
MonoGaussianAvatar is a novel approach that harnesses 3D Gaussian point representation and a Gaussian deformation field to learn explicit head avatars from monocular portrait videos.
Experiments demonstrate the superior performance of our method, which achieves state-of-the-art results among previous methods.
arXiv Detail & Related papers (2023-12-07T18:59:31Z) - Gaussian3Diff: 3D Gaussian Diffusion for 3D Full Head Synthesis and
Editing [53.05069432989608]
We present a novel framework for generating 3D human heads with remarkable flexibility.
Our method facilitates the creation of diverse and realistic 3D human heads with fine-grained editing over facial features and expressions.
arXiv Detail & Related papers (2023-12-05T19:05:58Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - GaussianHead: High-fidelity Head Avatars with Learnable Gaussian Derivation [35.39887092268696]
This paper presents a framework to model the actional human head with anisotropic 3D Gaussians.
In experiments, our method can produce high-fidelity renderings, outperforming state-of-the-art approaches in reconstruction, cross-identity reenactment, and novel view synthesis tasks.
arXiv Detail & Related papers (2023-12-04T05:24:45Z) - HAvatar: High-fidelity Head Avatar via Facial Model Conditioned Neural
Radiance Field [44.848368616444446]
We introduce a novel hybrid explicit-implicit 3D representation, Facial Model Conditioned Neural Radiance Field, which integrates the expressiveness of NeRF and the prior information from the parametric template.
By adopting an overall GAN-based architecture using an image-to-image translation network, we achieve high-resolution, realistic and view-consistent synthesis of dynamic head appearance.
arXiv Detail & Related papers (2023-09-29T10:45:22Z) - Learning Personalized High Quality Volumetric Head Avatars from
Monocular RGB Videos [47.94545609011594]
We propose a method to learn a high-quality implicit 3D head avatar from a monocular RGB video captured in the wild.
Our hybrid pipeline combines the geometry prior and dynamic tracking of a 3DMM with a neural radiance field to achieve fine-grained control and photorealism.
arXiv Detail & Related papers (2023-04-04T01:10:04Z) - DRaCoN -- Differentiable Rasterization Conditioned Neural Radiance
Fields for Articulated Avatars [92.37436369781692]
We present DRaCoN, a framework for learning full-body volumetric avatars.
It exploits the advantages of both the 2D and 3D neural rendering techniques.
Experiments on the challenging ZJU-MoCap and Human3.6M datasets indicate that DRaCoN outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.