Multicoated and Folded Graph Neural Networks with Strong Lottery Tickets
- URL: http://arxiv.org/abs/2312.03236v1
- Date: Wed, 6 Dec 2023 02:16:44 GMT
- Title: Multicoated and Folded Graph Neural Networks with Strong Lottery Tickets
- Authors: Jiale Yan, Hiroaki Ito, \'Angel L\'opez Garc\'ia-Arias, Yasuyuki
Okoshi, Hikari Otsuka, Kazushi Kawamura, Thiem Van Chu, Masato Motomura
- Abstract summary: This paper introduces the Multi-Stage Folding and Unshared Masks methods to expand the search space in terms of both architecture and parameters.
By achieving high sparsity, competitive performance, and high memory efficiency with up to 98.7% reduction, it demonstrates suitability for energy-efficient graph processing.
- Score: 3.0894823679470087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Strong Lottery Ticket Hypothesis (SLTH) demonstrates the existence of
high-performing subnetworks within a randomly initialized model, discoverable
through pruning a convolutional neural network (CNN) without any weight
training. A recent study, called Untrained GNNs Tickets (UGT), expanded SLTH
from CNNs to shallow graph neural networks (GNNs). However, discrepancies
persist when comparing baseline models with learned dense weights.
Additionally, there remains an unexplored area in applying SLTH to deeper GNNs,
which, despite delivering improved accuracy with additional layers, suffer from
excessive memory requirements. To address these challenges, this work utilizes
Multicoated Supermasks (M-Sup), a scalar pruning mask method, and implements it
in GNNs by proposing a strategy for setting its pruning thresholds adaptively.
In the context of deep GNNs, this research uncovers the existence of untrained
recurrent networks, which exhibit performance on par with their trained
feed-forward counterparts. This paper also introduces the Multi-Stage Folding
and Unshared Masks methods to expand the search space in terms of both
architecture and parameters. Through the evaluation of various datasets,
including the Open Graph Benchmark (OGB), this work establishes a triple-win
scenario for SLTH-based GNNs: by achieving high sparsity, competitive
performance, and high memory efficiency with up to 98.7\% reduction, it
demonstrates suitability for energy-efficient graph processing.
Related papers
- Scalable and Consistent Graph Neural Networks for Distributed Mesh-based Data-driven Modeling [0.0]
This work develops a distributed graph neural network (GNN) methodology for mesh-based modeling applications.
consistency refers to the fact that a GNN trained and evaluated on one rank (one large graph) is arithmetically equivalent to evaluations on multiple ranks (a partitioned graph)
It is shown how the NekRS mesh partitioning can be linked to the distributed GNN training and inference routines, resulting in a scalable mesh-based data-driven modeling workflow.
arXiv Detail & Related papers (2024-10-02T15:22:27Z) - Tackling Oversmoothing in GNN via Graph Sparsification: A Truss-based Approach [1.4854797901022863]
We propose a novel and flexible truss-based graph sparsification model that prunes edges from dense regions of the graph.
We then utilize our sparsification model in the state-of-the-art baseline GNNs and pooling models, such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL, DMonPool, and AdamGNN.
arXiv Detail & Related papers (2024-07-16T17:21:36Z) - Pursing the Sparse Limitation of Spiking Deep Learning Structures [42.334835610250714]
Spiking Neural Networks (SNNs) are garnering increased attention for their superior computation and energy efficiency.
We introduce an innovative algorithm capable of simultaneously identifying both weight and patch-level winning tickets.
We demonstrate that our spiking lottery ticket achieves comparable or superior performance even when the model structure is extremely sparse.
arXiv Detail & Related papers (2023-11-18T17:00:40Z) - You Can Have Better Graph Neural Networks by Not Training Weights at
All: Finding Untrained GNNs Tickets [105.24703398193843]
Untrainedworks in graph neural networks (GNNs) still remains mysterious.
We show that the found untrainedworks can substantially mitigate the GNN over-smoothing problem.
We also observe that such sparse untrainedworks have appealing performance in out-of-distribution detection and robustness of input perturbations.
arXiv Detail & Related papers (2022-11-28T14:17:36Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive
Benchmark Study [100.27567794045045]
Training deep graph neural networks (GNNs) is notoriously hard.
We present the first fair and reproducible benchmark dedicated to assessing the "tricks" of training deep GNNs.
arXiv Detail & Related papers (2021-08-24T05:00:37Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
Graph neural networks (GNN) have emerged as a vehicle for applying deep network architectures to graph and relational data.
In this paper, we build upon existing work and treat GNN neighbor sampling as a multi-armed bandit problem.
We introduce a newly-designed reward function that introduces some degree of bias designed to reduce variance and avoid unstable, possibly-unbounded payouts.
arXiv Detail & Related papers (2021-03-01T15:55:58Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
We develop a graph filter framework for approximating the modelling of hidden states in Recurrent Neural Networks (RNNs)
The proposed framework is validated through several multi-way sequence modelling tasks and benchmarked against traditional RNNs.
We show that the proposed RGTN is capable of not only out-performing standard RNNs, but also mitigating the Curse of Dimensionality associated with traditional RNNs.
arXiv Detail & Related papers (2020-09-18T10:13:36Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.