Three-dimensional harmonic oscillator as a quantum Otto engine
- URL: http://arxiv.org/abs/2312.03387v1
- Date: Wed, 6 Dec 2023 09:52:53 GMT
- Title: Three-dimensional harmonic oscillator as a quantum Otto engine
- Authors: Aleksandr Rodin
- Abstract summary: The coupling between the working fluid and the baths is controlled using an external central potential.
The efficiency and power of several realizations of the proposed engine are computed.
- Score: 65.268245109828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum Otto engine based on a three-dimensional harmonic oscillator is
proposed. One of the modes of this oscillator functions as the working fluid,
while the other two play the role of baths. The coupling between the working
fluid and the baths is controlled using an external central potential. All four
strokes of the engine are simulated numerically, exploring the nonadiabatic
effects in the compression and expansion phases, as well as the energy transfer
during the working fluid's contact with the baths. The efficiency and power of
several realizations of the proposed engine are also computed with the former
agreeing well with the theoretical predictions for the quantum Otto cycle.
Related papers
- A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [0.0]
We study a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting Bose gas.
We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a emphheat engine.
arXiv Detail & Related papers (2024-04-25T09:54:21Z) - Autonomous Quantum Heat Engine Based on Non-Markovian Dynamics of an Optomechanical Hamiltonian [0.0]
We build an analytical and a non-Markovian quasiclassical model for this quantum heat engine.
This proposal heralds the in-depth studies of quantum heat engines in the non-Markovian regime.
arXiv Detail & Related papers (2024-03-27T12:45:12Z) - Single-piston quantum engine [65.268245109828]
A single-piston quantum engine is proposed based on a harmonic oscillator acting as the working fluid.
The engine is simulated numerically using two different powering protocols: bath and measurement.
Using the collision model for the baths, the engine is shown to reach a steady state with positive work output.
arXiv Detail & Related papers (2024-03-10T02:38:09Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Driven quantum harmonic oscillators: A working medium for thermal
machines [0.0]
We consider a working substance that is permanently coupled to two or more baths at different temperatures and continuously driven.
We derive the heat flows and power of the working device which can operate as an engine, refrigerator or accelerator.
An increased driving frequency can lead to a change of functioning to a dissipator.
arXiv Detail & Related papers (2021-08-25T16:53:45Z) - Intrinsic decoherence dynamics in the three-coupled harmonic oscillators
interaction [77.34726150561087]
We give an explicit solution for the complete equation, i.e., beyond the usual second order approximation used to arrive to the Lindblad form.
arXiv Detail & Related papers (2021-08-01T02:36:23Z) - Quantum Parametric Oscillator Heat Engines in Squeezed Thermal Baths:
Foundational Theoretical Issues [0.0]
We present some foundational issues of theories of quantum open and squeezed systems.
Our aim is not to present ways for attaining higher efficiency but to build a more solid theoretical foundation for quantum engines of continuous variables.
arXiv Detail & Related papers (2021-06-23T11:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.