DBCopilot: Scaling Natural Language Querying to Massive Databases
- URL: http://arxiv.org/abs/2312.03463v2
- Date: Tue, 23 Apr 2024 08:54:57 GMT
- Title: DBCopilot: Scaling Natural Language Querying to Massive Databases
- Authors: Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xiaoyang Chen, Hao Wang, Zhenyu Zeng,
- Abstract summary: Existing methods face scalability challenges when dealing with massive, dynamically changing databases.
This paper introduces DBCopilot, a framework that employs a compact and flexible copilot model for routing across massive databases.
- Score: 47.009638761948466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL simplifies database interactions by enabling non-experts to convert their natural language (NL) questions into Structured Query Language (SQL) queries. While recent advances in large language models (LLMs) have improved the zero-shot text-to-SQL paradigm, existing methods face scalability challenges when dealing with massive, dynamically changing databases. This paper introduces DBCopilot, a framework that addresses these challenges by employing a compact and flexible copilot model for routing across massive databases. Specifically, DBCopilot decouples the text-to-SQL process into schema routing and SQL generation, leveraging a lightweight sequence-to-sequence neural network-based router to formulate database connections and navigate natural language questions through databases and tables. The routed schemas and questions are then fed into LLMs for efficient SQL generation. Furthermore, DBCopilot also introduced a reverse schema-to-question generation paradigm, which can learn and adapt the router over massive databases automatically without requiring manual intervention. Experimental results demonstrate that DBCopilot is a scalable and effective solution for real-world text-to-SQL tasks, providing a significant advancement in handling large-scale schemas.
Related papers
- Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation [25.638927795540454]
We introduce the Text-to-No task, which aims to convert natural language queries into accessible queries.
To promote research in this area, we released a large-scale and open-source dataset for this task, named TEND (short interfaces for Text-to-No dataset)
We also designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-No conversion.
arXiv Detail & Related papers (2025-02-16T17:01:48Z) - A Survey of Large Language Model-Based Generative AI for Text-to-SQL: Benchmarks, Applications, Use Cases, and Challenges [0.7889270818022226]
Text-to-one systems facilitate smooth interaction with databases by translating natural language queries into Structured Query Language (technical)
This survey provides an overview of the evolution of AI-driven text-to-one systems.
We examine the applications of text-to-one in domains like healthcare, education, and finance.
arXiv Detail & Related papers (2024-12-06T17:36:28Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
We introduce E-Seek, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation.
E-Seek enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question andsql construction plan, bridging the gap between the query and the database structure.
Comprehensive evaluations illustrate that E-Seek achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set.
arXiv Detail & Related papers (2024-09-25T09:02:48Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
Generating accuratesql from natural language questions (text-to-) is a long-standing challenge.
PLMs have been developed and utilized for text-to- tasks, achieving promising performance.
Recently, large language models (LLMs) have demonstrated significant capabilities in natural language understanding.
arXiv Detail & Related papers (2024-06-12T17:13:17Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z) - "What Do You Mean by That?" A Parser-Independent Interactive Approach
for Enhancing Text-to-SQL [49.85635994436742]
We include human in the loop and present a novel-independent interactive approach (PIIA) that interacts with users using multi-choice questions.
PIIA is capable of enhancing the text-to-domain performance with limited interaction turns by using both simulation and human evaluation.
arXiv Detail & Related papers (2020-11-09T02:14:33Z) - Photon: A Robust Cross-Domain Text-to-SQL System [189.1405317853752]
We present Photon, a robust, modular, cross-domain NLIDB that can flag natural language input to which a mapping cannot be immediately determined.
The proposed method effectively improves the robustness of text-to-native system against untranslatable user input.
arXiv Detail & Related papers (2020-07-30T07:44:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.