DiffusionSat: A Generative Foundation Model for Satellite Imagery
- URL: http://arxiv.org/abs/2312.03606v2
- Date: Sat, 25 May 2024 16:44:12 GMT
- Title: DiffusionSat: A Generative Foundation Model for Satellite Imagery
- Authors: Samar Khanna, Patrick Liu, Linqi Zhou, Chenlin Meng, Robin Rombach, Marshall Burke, David Lobell, Stefano Ermon,
- Abstract summary: We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
- Score: 63.2807119794691
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have achieved state-of-the-art results on many modalities including images, speech, and video. However, existing models are not tailored to support remote sensing data, which is widely used in important applications including environmental monitoring and crop-yield prediction. Satellite images are significantly different from natural images -- they can be multi-spectral, irregularly sampled across time -- and existing diffusion models trained on images from the Web do not support them. Furthermore, remote sensing data is inherently spatio-temporal, requiring conditional generation tasks not supported by traditional methods based on captions or images. In this paper, we present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets. As text-based captions are sparsely available for satellite images, we incorporate the associated metadata such as geolocation as conditioning information. Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting. Our method outperforms previous state-of-the-art methods for satellite image generation and is the first large-scale generative foundation model for satellite imagery. The project website can be found here: https://samar-khanna.github.io/DiffusionSat/
Related papers
- GEOBIND: Binding Text, Image, and Audio through Satellite Images [7.291750095728984]
We present a deep-learning model, GeoBind, that can infer about multiple modalities, specifically text, image, and audio, from satellite imagery of a location.
Our training results in a joint embedding space with multiple types of data: satellite image, ground-level image, audio, and text.
arXiv Detail & Related papers (2024-04-17T20:13:37Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Generate Your Own Scotland: Satellite Image Generation Conditioned on
Maps [5.49341063007719]
We show that state-of-the-art pretrained diffusion models can be conditioned on cartographic data to generate realistic satellite images.
We provide two large datasets of paired OpenStreetMap images and satellite views over the region of Mainland Scotland and the Central Belt.
arXiv Detail & Related papers (2023-08-31T11:44:40Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - Boundary Regularized Building Footprint Extraction From Satellite Images
Using Deep Neural Network [6.371173732947292]
We propose a novel deep neural network, which enables to jointly detect building instance and regularize noisy building boundary shapes from a single satellite imagery.
Our model can accomplish multi-tasks of object localization, recognition, semantic labelling and geometric shape extraction simultaneously.
arXiv Detail & Related papers (2020-06-23T17:24:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.