Relightable Gaussian Codec Avatars
- URL: http://arxiv.org/abs/2312.03704v2
- Date: Tue, 28 May 2024 02:09:23 GMT
- Title: Relightable Gaussian Codec Avatars
- Authors: Shunsuke Saito, Gabriel Schwartz, Tomas Simon, Junxuan Li, Giljoo Nam,
- Abstract summary: We present Relightable Gaussian Codec Avatars, a method to build high-fidelity relightable head avatars that can be animated to generate novel expressions.
Our geometry model based on 3D Gaussians can capture 3D-consistent sub-millimeter details such as hair strands and pores on dynamic face sequences.
We improve the fidelity of eye reflections and enable explicit gaze control by introducing relightable explicit eye models.
- Score: 26.255161061306428
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fidelity of relighting is bounded by both geometry and appearance representations. For geometry, both mesh and volumetric approaches have difficulty modeling intricate structures like 3D hair geometry. For appearance, existing relighting models are limited in fidelity and often too slow to render in real-time with high-resolution continuous environments. In this work, we present Relightable Gaussian Codec Avatars, a method to build high-fidelity relightable head avatars that can be animated to generate novel expressions. Our geometry model based on 3D Gaussians can capture 3D-consistent sub-millimeter details such as hair strands and pores on dynamic face sequences. To support diverse materials of human heads such as the eyes, skin, and hair in a unified manner, we present a novel relightable appearance model based on learnable radiance transfer. Together with global illumination-aware spherical harmonics for the diffuse components, we achieve real-time relighting with all-frequency reflections using spherical Gaussians. This appearance model can be efficiently relit under both point light and continuous illumination. We further improve the fidelity of eye reflections and enable explicit gaze control by introducing relightable explicit eye models. Our method outperforms existing approaches without compromising real-time performance. We also demonstrate real-time relighting of avatars on a tethered consumer VR headset, showcasing the efficiency and fidelity of our avatars.
Related papers
- URAvatar: Universal Relightable Gaussian Codec Avatars [42.25313535192927]
We present a new approach to creating photorealistic and relightable head avatars from a phone scan with unknown illumination.
The reconstructed avatars can be animated and relit in real time with the global illumination of diverse environments.
arXiv Detail & Related papers (2024-10-31T17:59:56Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - Interactive Rendering of Relightable and Animatable Gaussian Avatars [37.73483372890271]
We propose a simple and efficient method to decouple body materials and lighting from multi-view or monocular avatar videos.
Our method can render higher quality results at a faster speed on both synthetic and real datasets.
arXiv Detail & Related papers (2024-07-15T13:25:07Z) - Gaussian Head & Shoulders: High Fidelity Neural Upper Body Avatars with Anchor Gaussian Guided Texture Warping [12.308192525760667]
Existing methods only reconstruct a head without the body, substantially limiting their application scenarios.
We propose to model the body part with a neural texture that consists of coarse and pose-dependent fine colors.
We demonstrate that Gaussian Head & Shoulders can fit the high-frequency details on the clothed upper body with high fidelity and potentially improve the accuracy and fidelity of the head region.
arXiv Detail & Related papers (2024-05-20T14:39:49Z) - PSAvatar: A Point-based Shape Model for Real-Time Head Avatar Animation with 3D Gaussian Splatting [17.78639236586134]
PSAvatar is a novel framework for animatable head avatar creation.
It employs 3D Gaussian for fine detail representation and high fidelity rendering.
We show that PSAvatar can reconstruct high-fidelity head avatars of a variety of subjects and the avatars can be animated in real-time.
arXiv Detail & Related papers (2024-01-23T16:40:47Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z) - FLARE: Fast Learning of Animatable and Relightable Mesh Avatars [64.48254296523977]
Our goal is to efficiently learn personalized animatable 3D head avatars from videos that are geometrically accurate, realistic, relightable, and compatible with current rendering systems.
We introduce FLARE, a technique that enables the creation of animatable and relightable avatars from a single monocular video.
arXiv Detail & Related papers (2023-10-26T16:13:00Z) - Towards Practical Capture of High-Fidelity Relightable Avatars [60.25823986199208]
TRAvatar is trained with dynamic image sequences captured in a Light Stage under varying lighting conditions.
It can predict the appearance in real-time with a single forward pass, achieving high-quality relighting effects.
Our framework achieves superior performance for photorealistic avatar animation and relighting.
arXiv Detail & Related papers (2023-09-08T10:26:29Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
This paper presents a novel approach to building highly photorealistic digital head avatars.
Our method learns a canonical space via an implicit function parameterized by a neural network.
At test time, our method is driven by a monocular RGB video.
arXiv Detail & Related papers (2023-03-25T13:56:33Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
We introduce a style-based generative network that synthesizes in one pass all and only the required rendering samples of a neural radiance field.
We show that this model can accurately be fit to "in-the-wild" facial images of arbitrary pose and illumination, extract the facial characteristics, and be used to re-render the face in controllable conditions.
arXiv Detail & Related papers (2022-09-15T15:28:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.