Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection
- URL: http://arxiv.org/abs/2312.04095v1
- Date: Thu, 7 Dec 2023 07:17:24 GMT
- Title: Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection
- Authors: Tuan Hoang and Santu Rana and Sunil Gupta and Svetha Venkatesh
- Abstract summary: Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
- Score: 56.292071534857946
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent data-privacy laws have sparked interest in machine unlearning, which
involves removing the effect of specific training samples from a learnt model
as if they were never present in the original training dataset. The challenge
of machine unlearning is to discard information about the ``forget'' data in
the learnt model without altering the knowledge about the remaining dataset and
to do so more efficiently than the naive retraining approach. To achieve this,
we adopt a projected-gradient based learning method, named as
Projected-Gradient Unlearning (PGU), in which the model takes steps in the
orthogonal direction to the gradient subspaces deemed unimportant for the
retaining dataset, so as to its knowledge is preserved. By utilizing Stochastic
Gradient Descent (SGD) to update the model weights, our method can efficiently
scale to any model and dataset size. We provide empirically evidence to
demonstrate that our unlearning method can produce models that behave similar
to models retrained from scratch across various metrics even when the training
dataset is no longer accessible. Our code is available at
https://github.com/hnanhtuan/projected_gradient_unlearning.
Related papers
- Provable unlearning in topic modeling and downstream tasks [36.571324268874264]
Provable guarantees for unlearning are often limited to supervised learning settings.
We provide the first theoretical guarantees for unlearning in the pre-training and fine-tuning paradigm.
We show that it is easier to unlearn pre-training data from models that have been fine-tuned to a particular task, and one can unlearn this data without modifying the base model.
arXiv Detail & Related papers (2024-11-19T16:04:31Z) - Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
We propose a novel and efficient machine unlearning method on pre-trained models.
We leverage LoRA to decompose the model's intermediate features into pre-trained features and residual features.
The method aims to learn the zero residuals on the retained set and shifted residuals on the unlearning set.
arXiv Detail & Related papers (2024-11-13T08:56:35Z) - RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Unlearning Traces the Influential Training Data of Language Models [31.33791825286853]
This paper presents UnTrac: unlearning traces the influence of a training dataset on the model's performance.
We propose a more scalable approach, UnTrac-Inv, which unlearns a test dataset and evaluates the unlearned model on training datasets.
arXiv Detail & Related papers (2024-01-26T23:17:31Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
We propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model.
Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.
arXiv Detail & Related papers (2020-07-09T09:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.