Prompt Highlighter: Interactive Control for Multi-Modal LLMs
- URL: http://arxiv.org/abs/2312.04302v2
- Date: Wed, 20 Mar 2024 23:32:08 GMT
- Title: Prompt Highlighter: Interactive Control for Multi-Modal LLMs
- Authors: Yuechen Zhang, Shengju Qian, Bohao Peng, Shu Liu, Jiaya Jia,
- Abstract summary: This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation.
We introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation.
We find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs.
- Score: 50.830448437285355
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation. Multi-modal LLMs empower multi-modality understanding with the capability of semantic generation yet bring less explainability and heavier reliance on prompt contents due to their autoregressive generative nature. While manipulating prompt formats could improve outputs, designing specific and precise prompts per task can be challenging and ineffective. To tackle this issue, we introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation. Motivated by the classifier-free diffusion guidance, we form regular and unconditional context pairs based on highlighted tokens, demonstrating that the autoregressive generation in models can be guided in a classifier-free way. Notably, we find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs. Our approach is compatible with current LLMs and VLMs, achieving impressive customized generation results without training. Experiments confirm its effectiveness in focusing on input contexts and generating reliable content. Without tuning on LLaVA-v1.5, our method secured 70.7 in the MMBench test and 1552.5 in MME-perception. The code is available at: https://github.com/dvlab-research/Prompt-Highlighter/
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs [30.333277284839053]
Large language models (LLMs) have shown success in generating high-quality responses.
Existing methods to enhance response quality often involve a prompt refinement model.
We introduce a self-instructed in-context learning framework that empowers LLMs to deliver more effective responses.
arXiv Detail & Related papers (2024-09-03T02:42:39Z) - ControlMLLM: Training-Free Visual Prompt Learning for Multimodal Large Language Models [73.34709921061928]
We propose a training-free method to inject visual referring into Multimodal Large Language Models (MLLMs)
We observe the relationship between text prompt tokens and visual tokens in MLLMs, where attention layers model the connection between them.
We optimize a learnable visual token based on an energy function, enhancing the strength of referential regions in the attention map.
arXiv Detail & Related papers (2024-07-31T11:40:29Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - LLMBind: A Unified Modality-Task Integration Framework [38.95771765322677]
We introduce textbfLLMBind, a novel framework designed to unify a diverse array of multi-modal tasks.
By harnessing a Mixture-of-Experts (MoE) Large Language Model (LLM), LLMBind processes multi-modal inputs and generates task-specific tokens, enabling the invocation of corresponding models to accomplish tasks.
arXiv Detail & Related papers (2024-02-22T12:36:31Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Sight Beyond Text: Multi-Modal Training Enhances LLMs in Truthfulness
and Ethics [32.123919380959485]
Multi-modal large language models (MLLMs) are trained based on large language models (LLM)
While they excel in multi-modal tasks, the pure NLP abilities of MLLMs are often underestimated and left untested.
We show that visual instruction tuning, a prevailing strategy for transitioning LLMs into MLLMs, unexpectedly and interestingly helps models attain both improved truthfulness and ethical alignment.
arXiv Detail & Related papers (2023-09-13T17:57:21Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.