Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on
Prompt Engineering Strategies
- URL: http://arxiv.org/abs/2312.04344v2
- Date: Tue, 12 Dec 2023 06:37:53 GMT
- Title: Enhancing Medical Task Performance in GPT-4V: A Comprehensive Study on
Prompt Engineering Strategies
- Authors: Pengcheng Chen, Ziyan Huang, Zhongying Deng, Tianbin Li, Yanzhou Su,
Haoyu Wang, Jin Ye, Yu Qiao, Junjun He
- Abstract summary: GPT-4V, OpenAI's latest large vision-language model, has piqued considerable interest for its potential in medical applications.
Recent studies and internal reviews highlight its underperformance in specialized medical tasks.
This paper explores the boundary of GPT-4V's capabilities in medicine, particularly in processing complex imaging data from endoscopies, CT scans, and MRIs etc.
- Score: 28.98518677093905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: OpenAI's latest large vision-language model (LVLM), GPT-4V(ision), has piqued
considerable interest for its potential in medical applications. Despite its
promise, recent studies and internal reviews highlight its underperformance in
specialized medical tasks. This paper explores the boundary of GPT-4V's
capabilities in medicine, particularly in processing complex imaging data from
endoscopies, CT scans, and MRIs etc. Leveraging open-source datasets, we
assessed its foundational competencies, identifying substantial areas for
enhancement. Our research emphasizes prompt engineering, an often-underutilized
strategy for improving AI responsiveness. Through iterative testing, we refined
the model's prompts, significantly improving its interpretative accuracy and
relevance in medical imaging. From our comprehensive evaluations, we distilled
10 effective prompt engineering techniques, each fortifying GPT-4V's medical
acumen. These methodical enhancements facilitate more reliable, precise, and
clinically valuable insights from GPT-4V, advancing its operability in critical
healthcare environments. Our findings are pivotal for those employing AI in
medicine, providing clear, actionable guidance on harnessing GPT-4V's full
diagnostic potential.
Related papers
- STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine [15.491432387608112]
Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks.
Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning.
arXiv Detail & Related papers (2024-01-16T14:41:20Z) - Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case
Study in Medicine [89.46836590149883]
We build on a prior study of GPT-4's capabilities on medical challenge benchmarks in the absence of special training.
We find that prompting innovation can unlock deeper specialist capabilities and show that GPT-4 easily tops prior leading results for medical benchmarks.
With Medprompt, GPT-4 achieves state-of-the-art results on all nine of the benchmark datasets in the MultiMedQA suite.
arXiv Detail & Related papers (2023-11-28T03:16:12Z) - GPT-4V(ision) Unsuitable for Clinical Care and Education: A Clinician-Evaluated Assessment [6.321623278767821]
GPT-4V was recently developed for general image interpretation.
Board-certified physicians and senior residents assessed GPT-4V's proficiency across a range of medical conditions.
GPT-4V's diagnostic accuracy and clinical decision-making abilities are poor, posing risks to patient safety.
arXiv Detail & Related papers (2023-11-14T17:06:09Z) - Holistic Evaluation of GPT-4V for Biomedical Imaging [113.46226609088194]
GPT-4V represents a breakthrough in artificial general intelligence for computer vision.
We assess GPT-4V's performance across 16 medical imaging categories, including radiology, oncology, ophthalmology, pathology, and more.
Results show GPT-4V's proficiency in modality and anatomy recognition but difficulty with disease diagnosis and localization.
arXiv Detail & Related papers (2023-11-10T18:40:44Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
GPT-4V's multimodal capability for medical image analysis is evaluated.
It is found that GPT-4V excels in understanding medical images and generates high-quality radiology reports.
It is found that its performance for medical visual grounding needs to be substantially improved.
arXiv Detail & Related papers (2023-10-31T11:39:09Z) - Multimodal ChatGPT for Medical Applications: an Experimental Study of
GPT-4V [20.84152508192388]
We critically evaluate the capabilities of the state-of-the-art multimodal large language model, GPT-4 with Vision (GPT-4V)
Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets.
The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics.
arXiv Detail & Related papers (2023-10-29T16:26:28Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - Capabilities of GPT-4 on Medical Challenge Problems [23.399857819743158]
GPT-4 is a general-purpose model that is not specialized for medical problems through training or to solve clinical tasks.
We present a comprehensive evaluation of GPT-4 on medical competency examinations and benchmark datasets.
arXiv Detail & Related papers (2023-03-20T16:18:38Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.