GaitGuard: Towards Private Gait in Mixed Reality
- URL: http://arxiv.org/abs/2312.04470v3
- Date: Tue, 4 Jun 2024 05:13:26 GMT
- Title: GaitGuard: Towards Private Gait in Mixed Reality
- Authors: Diana Romero, Ruchi Jagdish Patel, Athina Markopoulou, Salma Elmalaki,
- Abstract summary: GaitGuard is the first real-time framework designed to protect the privacy of gait features within the camera view of AR/MR devices.
GaitGuard reduces the risk of identification by up to 68%, while maintaining a minimal latency of merely 118.77 ms.
- Score: 3.2392550445029396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Augmented/Mixed Reality (AR/MR) technologies offers a new era of immersive, collaborative experiences, distinctively setting them apart from conventional mobile systems. However, as we further investigate the privacy and security implications within these environments, the issue of gait privacy emerges as a critical yet underexplored concern. Given its uniqueness as a biometric identifier that can be correlated to several sensitive attributes, the protection of gait information becomes crucial in preventing potential identity tracking and unauthorized profiling within these systems. In this paper, we conduct a user study with 20 participants to assess the risk of individual identification through gait feature analysis extracted from video feeds captured by MR devices. Our results show the capability to uniquely identify individuals with an accuracy of up to 92%, underscoring an urgent need for effective gait privacy protection measures. Through rigorous evaluation, we present a comparative analysis of various mitigation techniques, addressing both aware and unaware adversaries, in terms of their utility and impact on privacy preservation. From these evaluations, we introduce GaitGuard, the first real-time framework designed to protect the privacy of gait features within the camera view of AR/MR devices. Our evaluations of GaitGuard within a MR collaborative scenario demonstrate its effectiveness in implementing mitigation that reduces the risk of identification by up to 68%, while maintaining a minimal latency of merely 118.77 ms, thus marking a critical step forward in safeguarding privacy within AR/MR ecosystems.
Related papers
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - Privacy-Preserving Gaze Data Streaming in Immersive Interactive Virtual Reality: Robustness and User Experience [11.130411904676095]
Eye tracking data, if exposed, can be used for re-identification attacks.
We develop a methodology to evaluate real-time privacy mechanisms for interactive VR applications.
arXiv Detail & Related papers (2024-02-12T14:53:12Z) - Privacy Protectability: An Information-theoretical Approach [4.14084373472438]
We propose a new metric, textitprivacy protectability, to characterize to what degree a video stream can be protected.
Our definition of privacy protectability is rooted in information theory and we develop efficient algorithms to estimate the metric.
arXiv Detail & Related papers (2023-05-25T04:06:55Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain.
Our method performs very well with several classical face recognition test sets.
arXiv Detail & Related papers (2022-07-15T07:15:36Z) - PrivHAR: Recognizing Human Actions From Privacy-preserving Lens [58.23806385216332]
We propose an optimizing framework to provide robust visual privacy protection along the human action recognition pipeline.
Our framework parameterizes the camera lens to successfully degrade the quality of the videos to inhibit privacy attributes and protect against adversarial attacks.
arXiv Detail & Related papers (2022-06-08T13:43:29Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Learning With Differential Privacy [3.618133010429131]
Differential privacy comes to the rescue with a proper promise of protection against leakage.
It uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility.
arXiv Detail & Related papers (2020-06-10T02:04:13Z) - Differential Privacy for Eye Tracking with Temporal Correlations [30.44437258959343]
New generation head-mounted displays, such as VR and AR glasses, are coming into the market with already integrated eye tracking.
Since eye movement properties contain biometric information, privacy concerns have to be handled properly.
We propose a novel transform-coding based differential privacy mechanism to further adapt it to the statistics of eye movement feature data.
arXiv Detail & Related papers (2020-02-20T19:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.