A holographic view of topological stabilizer codes
- URL: http://arxiv.org/abs/2312.04617v1
- Date: Thu, 7 Dec 2023 19:00:00 GMT
- Title: A holographic view of topological stabilizer codes
- Authors: Thomas Schuster, Nathanan Tantivasadakarn, Ashvin Vishwanath, Norman
Y. Yao
- Abstract summary: We provide an explicit and general framework for understanding the bulk-boundary correspondence in Pauli topological stabilizer codes.
We show that the boundary Hilbert space cannot be realized via local degrees of freedom.
We show how linear and fractal subsystem symmetries naturally arise at the boundaries of fracton phases.
- Score: 0.6290982779160698
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The bulk-boundary correspondence is a hallmark feature of topological phases
of matter. Nonetheless, our understanding of the correspondence remains
incomplete for phases with intrinsic topological order, and is nearly entirely
lacking for more exotic phases, such as fractons. Intriguingly, for the former,
recent work suggests that bulk topological order manifests in a non-local
structure in the boundary Hilbert space; however, a concrete understanding of
how and where this perspective applies remains limited. Here, we provide an
explicit and general framework for understanding the bulk-boundary
correspondence in Pauli topological stabilizer codes. We show -- for any
boundary termination of any two-dimensional topological stabilizer code -- that
the boundary Hilbert space cannot be realized via local degrees of freedom, in
a manner precisely determined by the anyon data of the bulk topological order.
We provide a simple method to compute this "obstruction" using a well-known
mapping to polynomials over finite fields. Leveraging this mapping, we
generalize our framework to fracton models in three-dimensions, including both
the X-Cube model and Haah's code. An important consequence of our results is
that the boundaries of topological phases can exhibit emergent symmetries that
are impossible to otherwise achieve without an unrealistic degree of fine
tuning. For instance, we show how linear and fractal subsystem symmetries
naturally arise at the boundaries of fracton phases.
Related papers
- Critical spin models from holographic disorder [49.1574468325115]
We study the behavior of XXZ spin chains with a quasiperiodic disorder not present in continuum holography.
Our results suggest the existence of a class of critical phases whose symmetries are derived from models of discrete holography.
arXiv Detail & Related papers (2024-09-25T18:00:02Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - On Topology of the Moduli Space of Gapped Hamiltonians for Topological
Phases [0.0]
We study the moduli space of gapped Hamiltonians in the same topological phase.
We show that nontrivial family of gapped systems with the same topological order can protect isolated phase transitions.
We argue that family of gapped systems obey a version of bulk-boundary correspondence.
arXiv Detail & Related papers (2022-11-29T19:01:18Z) - Defect bulk-boundary correspondence of topological skyrmion phases of
matter [2.2774471443318762]
We find a different generalization of Majorana zero-modes in effectively non-interacting systems.
Cross zero-modes are realized for topological skyrmion phases under certain open boundary conditions.
arXiv Detail & Related papers (2022-06-05T19:57:10Z) - Extrinsic topology of Floquet anomalous boundary states in quantum walks [0.0]
We find that Floquet anomalous boundary states in quantum walks have similar extrinsic topological natures.
In contrast to higher order topological insulators, the extrinsic topology in quantum walks is manifest even for first-order topological phases.
arXiv Detail & Related papers (2021-12-06T16:56:28Z) - Towards topological fixed-point models beyond gappable boundaries [2.025761610861237]
We consider fixed-point models for topological phases of matter formulated as discrete path integrals in the language of tensor networks.
All of the established ansatzes for fixed-point models imply the existence of a gapped boundary as well as a commuting-projector Hamiltonian.
We present a more general fixed-point ansatz not affected by the aforementioned restrictions.
arXiv Detail & Related papers (2021-11-29T19:00:02Z) - Illuminating the bulk-boundary correspondence of a non-Hermitian stub
lattice with Majorana stars [0.0]
We analyze the topological phases of a nonreciprocal hopping model on the stub lattice.
The parity of the total azimuthal winding of the entire Majorana constellation correctly predicts the appearance of edge states between the bulk gaps.
arXiv Detail & Related papers (2021-08-27T16:09:27Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.