The Potential Impact of AI Innovations on U.S. Occupations
- URL: http://arxiv.org/abs/2312.04714v5
- Date: Tue, 30 Jul 2024 15:52:52 GMT
- Title: The Potential Impact of AI Innovations on U.S. Occupations
- Authors: Ali Akbar Septiandri, Marios Constantinides, Daniele Quercia,
- Abstract summary: We employ Deep Learning Natural Language Processing to identify AI patents that may impact various occupational tasks at scale.
Our methodology relies on a comprehensive dataset of 17,879 task descriptions and quantifies AI's potential impact.
Our results reveal that some occupations will potentially be impacted, and that impact is intricately linked to specific skills.
- Score: 3.0829845709781725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An occupation is comprised of interconnected tasks, and it is these tasks, not occupations themselves, that are affected by AI. To evaluate how tasks may be impacted, previous approaches utilized manual annotations or coarse-grained matching. Leveraging recent advancements in machine learning, we replace coarse-grained matching with more precise deep learning approaches. Introducing the AI Impact (AII) measure, we employ Deep Learning Natural Language Processing to automatically identify AI patents that may impact various occupational tasks at scale. Our methodology relies on a comprehensive dataset of 17,879 task descriptions and quantifies AI's potential impact through analysis of 24,758 AI patents filed with the United States Patent and Trademark Office (USPTO) between 2015 and 2022. Our results reveal that some occupations will potentially be impacted, and that impact is intricately linked to specific skills. These include not only routine tasks (codified as a series of steps), as previously thought, but also non-routine ones (e.g., diagnosing health conditions, programming computers, and tracking flight routes). However, AI's impact on labour is limited by the fact that some of the occupations affected are augmented rather than replaced (e.g., neurologists, software engineers, air traffic controllers), and the sectors affected are experiencing labour shortages (e.g., IT, Healthcare, Transport).
Related papers
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
We show the effects of performance pressure on AI advice reliance when laypeople complete a common AI-assisted task.
We find that when the stakes are high, people use AI advice more appropriately than when stakes are lower, regardless of the presence of an AI explanation.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - How much does AI impact development speed? An enterprise-based randomized controlled trial [8.759453531975668]
We estimate the impact of three AI features on the time developers spent on a complex, enterprise-grade task.
We also found an interesting effect whereby developers who spend more hours on code-related activities per day were faster with AI.
arXiv Detail & Related papers (2024-10-16T18:31:14Z) - More Questions than Answers? Lessons from Integrating Explainable AI into a Cyber-AI Tool [1.5711133309434766]
We describe a preliminary case study on the use of XAI for source code classification.
We find that the outputs of state-of-the-art saliency explanation techniques are lost in translation when interpreted by people with little AI expertise.
We outline unaddressed gaps in practical and effective XAI, then touch on how emerging technologies like Large Language Models (LLMs) could mitigate these existing obstacles.
arXiv Detail & Related papers (2024-08-08T20:09:31Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
One-third of U.S. employment is highly exposed to AI, primarily in high-skill jobs.
This exposure correlates positively with employment and wage growth from 2019 to 2023.
arXiv Detail & Related papers (2024-07-27T08:14:18Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Measuring Ethics in AI with AI: A Methodology and Dataset Construction [1.6861004263551447]
We propose to use such newfound capabilities of AI technologies to augment our AI measuring capabilities.
We do so by training a model to classify publications related to ethical issues and concerns.
We highlight the implications of AI metrics, in particular their contribution towards developing trustful and fair AI-based tools and technologies.
arXiv Detail & Related papers (2021-07-26T00:26:12Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.