BELT: Old-School Backdoor Attacks can Evade the State-of-the-Art Defense with Backdoor Exclusivity Lifting
- URL: http://arxiv.org/abs/2312.04902v2
- Date: Thu, 25 Apr 2024 08:48:47 GMT
- Title: BELT: Old-School Backdoor Attacks can Evade the State-of-the-Art Defense with Backdoor Exclusivity Lifting
- Authors: Huming Qiu, Junjie Sun, Mi Zhang, Xudong Pan, Min Yang,
- Abstract summary: We propose and investigate a new characteristic of backdoor attacks, namely, backdoor exclusivity.
Backdoor exclusivity measures the ability of backdoor triggers to remain effective in the presence of input variation.
Our approach substantially enhances the stealthiness of four old-school backdoor attacks, at almost no cost of the attack success rate and normal utility.
- Score: 21.91491621538245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are susceptible to backdoor attacks, where malicious functionality is embedded to allow attackers to trigger incorrect classifications. Old-school backdoor attacks use strong trigger features that can easily be learned by victim models. Despite robustness against input variation, the robustness however increases the likelihood of unintentional trigger activations. This leaves traces to existing defenses, which find approximate replacements for the original triggers that can activate the backdoor without being identical to the original trigger via, e.g., reverse engineering and sample overlay. In this paper, we propose and investigate a new characteristic of backdoor attacks, namely, backdoor exclusivity, which measures the ability of backdoor triggers to remain effective in the presence of input variation. Building upon the concept of backdoor exclusivity, we propose Backdoor Exclusivity LifTing (BELT), a novel technique which suppresses the association between the backdoor and fuzzy triggers to enhance backdoor exclusivity for defense evasion. Extensive evaluation on three popular backdoor benchmarks validate, our approach substantially enhances the stealthiness of four old-school backdoor attacks, which, after backdoor exclusivity lifting, is able to evade seven state-of-the-art backdoor countermeasures, at almost no cost of the attack success rate and normal utility. For example, one of the earliest backdoor attacks BadNet, enhanced by BELT, evades most of the state-of-the-art defenses including ABS and MOTH which would otherwise recognize the backdoored model.
Related papers
- A Spatiotemporal Stealthy Backdoor Attack against Cooperative Multi-Agent Deep Reinforcement Learning [12.535344011523897]
cooperative multi-agent deep reinforcement learning (c-MADRL) is under the threat of backdoor attacks.
We propose a novel backdoor attack against c-MADRL, which attacks entire multi-agent team by embedding backdoor only in one agent.
Our backdoor attacks are able to reach a high attack success rate (91.6%) while maintaining a low clean performance variance rate (3.7%)
arXiv Detail & Related papers (2024-09-12T06:17:37Z) - Breaking the False Sense of Security in Backdoor Defense through Re-Activation Attack [32.74007523929888]
We re-investigate the characteristics of backdoored models after defense.
We find that the original backdoors still exist in defense models derived from existing post-training defense strategies.
We empirically show that these dormant backdoors can be easily re-activated during inference.
arXiv Detail & Related papers (2024-05-25T08:57:30Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Dual Model Replacement:invisible Multi-target Backdoor Attack based on Federal Learning [21.600003684064706]
This paper designs a backdoor attack method based on federated learning.
aiming at the concealment of the backdoor trigger, a TrojanGan steganography model with encoder-decoder structure is designed.
A dual model replacement backdoor attack algorithm based on federated learning is designed.
arXiv Detail & Related papers (2024-04-22T07:44:02Z) - LOTUS: Evasive and Resilient Backdoor Attacks through Sub-Partitioning [49.174341192722615]
Backdoor attack poses a significant security threat to Deep Learning applications.
Recent papers have introduced attacks using sample-specific invisible triggers crafted through special transformation functions.
We introduce a novel backdoor attack LOTUS to address both evasiveness and resilience.
arXiv Detail & Related papers (2024-03-25T21:01:29Z) - From Shortcuts to Triggers: Backdoor Defense with Denoised PoE [51.287157951953226]
Language models are often at risk of diverse backdoor attacks, especially data poisoning.
Existing backdoor defense methods mainly focus on backdoor attacks with explicit triggers.
We propose an end-to-end ensemble-based backdoor defense framework, DPoE, to defend various backdoor attacks.
arXiv Detail & Related papers (2023-05-24T08:59:25Z) - BATT: Backdoor Attack with Transformation-based Triggers [72.61840273364311]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
Backdoor adversaries inject hidden backdoors that can be activated by adversary-specified trigger patterns.
One recent research revealed that most of the existing attacks failed in the real physical world.
arXiv Detail & Related papers (2022-11-02T16:03:43Z) - Rethink Stealthy Backdoor Attacks in Natural Language Processing [35.6803390044542]
The capacity of stealthy backdoor attacks is overestimated when categorized as backdoor attacks.
We propose a new metric called attack successful rate difference (ASRD), which measures the ASR difference between clean state and poison state models.
Our method achieves significantly better performance than state-of-the-art defense methods against stealthy backdoor attacks.
arXiv Detail & Related papers (2022-01-09T12:34:12Z) - Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution [57.51117978504175]
Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks.
Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated.
We present invisible backdoors that are activated by a learnable combination of word substitution.
arXiv Detail & Related papers (2021-06-11T13:03:17Z) - On Certifying Robustness against Backdoor Attacks via Randomized
Smoothing [74.79764677396773]
We study the feasibility and effectiveness of certifying robustness against backdoor attacks using a recent technique called randomized smoothing.
Our results show the theoretical feasibility of using randomized smoothing to certify robustness against backdoor attacks.
Existing randomized smoothing methods have limited effectiveness at defending against backdoor attacks.
arXiv Detail & Related papers (2020-02-26T19:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.