SlimSAM: 0.1% Data Makes Segment Anything Slim
- URL: http://arxiv.org/abs/2312.05284v4
- Date: Thu, 26 Sep 2024 05:41:56 GMT
- Title: SlimSAM: 0.1% Data Makes Segment Anything Slim
- Authors: Zigeng Chen, Gongfan Fang, Xinyin Ma, Xinchao Wang,
- Abstract summary: We introduce SlimSAM, a novel data-efficient SAM compression method.
SlimSAM achieves superior performance with extremely less training data.
The code is available at http://github.com/czg1225/SlimSAM.
- Score: 52.96232442322824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current approaches for compressing the Segment Anything Model (SAM) yield commendable results, yet necessitate extensive data to train a new network from scratch. Employing conventional pruning techniques can remarkably reduce data requirements but would suffer from a degradation in performance. To address this challenging trade-off, we introduce SlimSAM, a novel data-efficient SAM compression method that achieves superior performance with extremely less training data. The essence of SlimSAM is encapsulated in the alternate slimming framework which effectively enhances knowledge inheritance under severely limited training data availability and exceptional pruning ratio. Diverging from prior techniques, our framework progressively compresses the model by alternately pruning and distilling distinct, decoupled sub-structures. Disturbed Taylor pruning is also proposed to address the misalignment between the pruning objective and training target, thereby boosting the post-distillation after pruning. SlimSAM yields significant performance improvements while demanding over 10 times less training data than any other existing compression methods. Even when compared to the original SAM, SlimSAM achieves approaching performance while reducing parameter counts to merely 1.4% (9.1M), MACs to 0.8% (23G), and requiring only 0.1% (10k) of the SAM training data. The code is available at http://github.com/czg1225/SlimSAM.
Related papers
- Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization [17.670203551488218]
We propose Asymptotic Unbiased Sampling to accelerate Sharpness-Aware Minimization (AUSAM)
AUSAM maintains the model's generalization capacity while significantly enhancing computational efficiency.
As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks.
arXiv Detail & Related papers (2024-06-12T08:47:44Z) - Stabilizing Sharpness-aware Minimization Through A Simple Renormalization Strategy [12.050160495730381]
sharpness-aware generalization (SAM) has attracted much attention because of its surprising effectiveness in improving performance.
We propose a simple renormalization strategy, dubbed Stable SAM (SSAM), so that the gradient norm of the descent step maintains the same as that of the ascent step.
Our strategy is easy to implement and flexible enough to integrate with SAM and its variants, almost at no computational cost.
arXiv Detail & Related papers (2024-01-14T10:53:36Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
We propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance.
We first propose a full-stage knowledge distillation method with hard prompt sampling and hard mask weighting strategy to distill a lightweight student model.
We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost.
arXiv Detail & Related papers (2023-12-21T12:26:11Z) - Systematic Investigation of Sparse Perturbed Sharpness-Aware
Minimization Optimizer [158.2634766682187]
Deep neural networks often suffer from poor generalization due to complex and non- unstructured loss landscapes.
SharpnessAware Minimization (SAM) is a popular solution that smooths the loss by minimizing the change of landscape when adding a perturbation.
In this paper, we propose Sparse SAM (SSAM), an efficient and effective training scheme that achieves perturbation by a binary mask.
arXiv Detail & Related papers (2023-06-30T09:33:41Z) - Make Sharpness-Aware Minimization Stronger: A Sparsified Perturbation
Approach [132.37966970098645]
One of the popular solutions is Sharpness-Aware Minimization (SAM), which minimizes the change of weight loss when adding a perturbation.
In this paper, we propose an efficient effective training scheme coined as Sparse SAM (SSAM), which achieves double overhead of common perturbations.
In addition, we theoretically prove that S can converge at the same SAM, i.e., $O(log T/sqrtTTTTTTTTTTTTTTTTT
arXiv Detail & Related papers (2022-10-11T06:30:10Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
We propose a novel algorithm LookSAM that only periodically calculates the inner gradient ascent.
LookSAM achieves similar accuracy gains to SAM while being tremendously faster.
We are the first to successfully scale up the batch size when training Vision Transformers (ViTs)
arXiv Detail & Related papers (2022-03-05T11:53:37Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
This paper proposes Efficient Sharpness Aware Minimizer (M) which boosts SAM s efficiency at no cost to its generalization performance.
M includes two novel and efficient training strategies-StochasticWeight Perturbation and Sharpness-Sensitive Data Selection.
We show, via extensive experiments on the CIFAR and ImageNet datasets, that ESAM enhances the efficiency over SAM from requiring 100% extra computations to 40% vis-a-vis bases.
arXiv Detail & Related papers (2021-10-07T02:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.