Teamwork Dimensions Classification Using BERT
- URL: http://arxiv.org/abs/2312.05483v1
- Date: Sat, 9 Dec 2023 07:18:41 GMT
- Title: Teamwork Dimensions Classification Using BERT
- Authors: Junyoung Lee and Elizabeth Koh
- Abstract summary: An automated natural language processing approach was developed to identify teamwork dimensions of students' online team chat.
Developments in the field of natural language processing and artificial intelligence have resulted in advanced deep transfer learning approaches.
This model will contribute towards an enhanced learning analytics tool for teamwork assessment and feedback.
- Score: 0.8566457170664924
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Teamwork is a necessary competency for students that is often inadequately
assessed. Towards providing a formative assessment of student teamwork, an
automated natural language processing approach was developed to identify
teamwork dimensions of students' online team chat. Developments in the field of
natural language processing and artificial intelligence have resulted in
advanced deep transfer learning approaches namely the Bidirectional Encoder
Representations from Transformers (BERT) model that allow for more in-depth
understanding of the context of the text. While traditional machine learning
algorithms were used in the previous work for the automatic classification of
chat messages into the different teamwork dimensions, our findings have shown
that classifiers based on the pre-trained language model BERT provides improved
classification performance, as well as much potential for generalizability in
the language use of varying team chat contexts and team member demographics.
This model will contribute towards an enhanced learning analytics tool for
teamwork assessment and feedback.
Related papers
- From Prediction to Application: Language Model-based Code Knowledge Tracing with Domain Adaptive Pre-Training and Automatic Feedback System with Pedagogical Prompting for Comprehensive Programming Education [2.932399587069876]
This paper introduces Language Model-based Code Knowledge Tracing (CodeLKT)
CodeLKT is an innovative application of Language model-based Knowledge Tracing (LKT) to programming education.
arXiv Detail & Related papers (2024-08-31T01:36:38Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - XDBERT: Distilling Visual Information to BERT from Cross-Modal Systems
to Improve Language Understanding [73.24847320536813]
This study explores distilling visual information from pretrained multimodal transformers to pretrained language encoders.
Our framework is inspired by cross-modal encoders' success in visual-language tasks while we alter the learning objective to cater to the language-heavy characteristics of NLU.
arXiv Detail & Related papers (2022-04-15T03:44:00Z) - Leveraging pre-trained language models for conversational information
seeking from text [2.8425118603312]
In this paper we investigate the usage of in-context learning and pre-trained language representation models to address the problem of information extraction from process description documents.
The results highlight the potential of the approach and the usefulness of the in-context learning customizations.
arXiv Detail & Related papers (2022-03-31T09:00:46Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Context Matters in Semantically Controlled Language Generation for
Task-oriented Dialogue Systems [6.1478669848771546]
This work combines information about the dialogue history encoded by pre-trained model with a meaning representation of the current system utterance to realize contextual language generation in task-oriented dialogues.
We utilize the pre-trained multi-context ConveRT model for context representation in a model trained from scratch; and leverage the immediate preceding user utterance for context generation in a model adapted from the pre-trained GPT-2.
arXiv Detail & Related papers (2021-11-28T11:48:02Z) - Interpreting Language Models Through Knowledge Graph Extraction [42.97929497661778]
We compare BERT-based language models through snapshots of acquired knowledge at sequential stages of the training process.
We present a methodology to unveil a knowledge acquisition timeline by generating knowledge graph extracts from cloze "fill-in-the-blank" statements.
We extend this analysis to a comparison of pretrained variations of BERT models (DistilBERT, BERT-base, RoBERTa)
arXiv Detail & Related papers (2021-11-16T15:18:01Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
We propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text.
Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks.
arXiv Detail & Related papers (2020-12-30T03:35:22Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z) - How Context Affects Language Models' Factual Predictions [134.29166998377187]
We integrate information from a retrieval system with a pre-trained language model in a purely unsupervised way.
We report that augmenting pre-trained language models in this way dramatically improves performance and that the resulting system, despite being unsupervised, is competitive with a supervised machine reading baseline.
arXiv Detail & Related papers (2020-05-10T09:28:12Z) - Learning an Unreferenced Metric for Online Dialogue Evaluation [53.38078951628143]
We propose an unreferenced automated evaluation metric that uses large pre-trained language models to extract latent representations of utterances.
We show that our model achieves higher correlation with human annotations in an online setting, while not requiring true responses for comparison during inference.
arXiv Detail & Related papers (2020-05-01T20:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.