Speed Up Federated Learning in Heterogeneous Environment: A Dynamic
Tiering Approach
- URL: http://arxiv.org/abs/2312.05642v1
- Date: Sat, 9 Dec 2023 19:09:19 GMT
- Title: Speed Up Federated Learning in Heterogeneous Environment: A Dynamic
Tiering Approach
- Authors: Seyed Mahmoud Sajjadi Mohammadabadi, Syed Zawad, Feng Yan, and Lei
Yang
- Abstract summary: Federated learning (FL) enables collaboratively training a model while keeping the training data decentralized and private.
One significant impediment to training a model using FL, especially large models, is the resource constraints of devices with heterogeneous computation and communication capacities as well as varying task sizes.
We propose the Dynamic Tiering-based Federated Learning (DTFL) system where slower clients dynamically offload part of the model to the server to alleviate resource constraints and speed up training.
- Score: 5.504000607257414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) enables collaboratively training a model while
keeping the training data decentralized and private. However, one significant
impediment to training a model using FL, especially large models, is the
resource constraints of devices with heterogeneous computation and
communication capacities as well as varying task sizes. Such heterogeneity
would render significant variations in the training time of clients, resulting
in a longer overall training time as well as a waste of resources in faster
clients. To tackle these heterogeneity issues, we propose the Dynamic
Tiering-based Federated Learning (DTFL) system where slower clients dynamically
offload part of the model to the server to alleviate resource constraints and
speed up training. By leveraging the concept of Split Learning, DTFL offloads
different portions of the global model to clients in different tiers and
enables each client to update the models in parallel via local-loss-based
training. This helps reduce the computation and communication demand on
resource-constrained devices and thus mitigates the straggler problem. DTFL
introduces a dynamic tier scheduler that uses tier profiling to estimate the
expected training time of each client, based on their historical training time,
communication speed, and dataset size. The dynamic tier scheduler assigns
clients to suitable tiers to minimize the overall training time in each round.
We first theoretically prove the convergence properties of DTFL. We then train
large models (ResNet-56 and ResNet-110) on popular image datasets (CIFAR-10,
CIFAR-100, CINIC-10, and HAM10000) under both IID and non-IID systems.
Extensive experimental results show that compared with state-of-the-art FL
methods, DTFL can significantly reduce the training time while maintaining
model accuracy.
Related papers
- Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - NeFL: Nested Model Scaling for Federated Learning with System Heterogeneous Clients [44.89061671579694]
Federated learning (FL) enables distributed training while preserving data privacy, but stragglers-slow or incapable clients-can significantly slow down the total training time and degrade performance.
We propose nested federated learning (NeFL), a framework that efficiently divides deep neural networks into submodels using both depthwise and widthwise scaling.
NeFL achieves performance gain, especially for the worst-case submodel compared to baseline approaches.
arXiv Detail & Related papers (2023-08-15T13:29:14Z) - SemiSFL: Split Federated Learning on Unlabeled and Non-IID Data [34.49090830845118]
Federated Learning (FL) has emerged to allow multiple clients to collaboratively train machine learning models on their private data at the network edge.
We propose a novel Semi-supervised SFL system, termed SemiSFL, which incorporates clustering regularization to perform SFL with unlabeled and non-IID client data.
Our system provides a 3.8x speed-up in training time, reduces the communication cost by about 70.3% while reaching the target accuracy, and achieves up to 5.8% improvement in accuracy under non-IID scenarios.
arXiv Detail & Related papers (2023-07-29T02:35:37Z) - DynamicFL: Balancing Communication Dynamics and Client Manipulation for
Federated Learning [6.9138560535971605]
Federated Learning (FL) aims to train a global model by exploiting the decentralized data across millions of edge devices.
Given the geo-distributed edge devices with highly dynamic networks in the wild, aggregating all the model updates from those participating devices will result in inevitable long-tail delays in FL.
We propose a novel FL framework, DynamicFL, by considering the communication dynamics and data quality across massive edge devices with a specially designed client manipulation strategy.
arXiv Detail & Related papers (2023-07-16T19:09:31Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z) - Coded Federated Learning [5.375775284252717]
Federated learning is a method of training a global model from decentralized data distributed across client devices.
Our results show that CFL allows the global model to converge nearly four times faster when compared to an uncoded approach.
arXiv Detail & Related papers (2020-02-21T23:06:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.