Privacy Preserving Multi-Agent Reinforcement Learning in Supply Chains
- URL: http://arxiv.org/abs/2312.05686v1
- Date: Sat, 9 Dec 2023 21:25:21 GMT
- Title: Privacy Preserving Multi-Agent Reinforcement Learning in Supply Chains
- Authors: Ananta Mukherjee, Peeyush Kumar, Boling Yang, Nishanth Chandran, Divya
Gupta
- Abstract summary: This paper addresses privacy concerns in multiagent reinforcement learning (MARL) within the context of supply chains.
We propose a game-theoretic, privacy-related mechanism, utilizing a secure multi-party computation framework in MARL settings.
We present a learning mechanism that carries out floating point operations in a privacy-preserving manner.
- Score: 5.436598805836688
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses privacy concerns in multi-agent reinforcement learning
(MARL), specifically within the context of supply chains where individual
strategic data must remain confidential. Organizations within the supply chain
are modeled as agents, each seeking to optimize their own objectives while
interacting with others. As each organization's strategy is contingent on
neighboring strategies, maintaining privacy of state and action-related
information is crucial. To tackle this challenge, we propose a game-theoretic,
privacy-preserving mechanism, utilizing a secure multi-party computation (MPC)
framework in MARL settings. Our major contribution is the successful
implementation of a secure MPC framework, SecFloat on EzPC, to solve this
problem. However, simply implementing policy gradient methods such as MADDPG
operations using SecFloat, while conceptually feasible, would be
programmatically intractable. To overcome this hurdle, we devise a novel
approach that breaks down the forward and backward pass of the neural network
into elementary operations compatible with SecFloat , creating efficient and
secure versions of the MADDPG algorithm. Furthermore, we present a learning
mechanism that carries out floating point operations in a privacy-preserving
manner, an important feature for successful learning in MARL framework.
Experiments reveal that there is on average 68.19% less supply chain wastage in
2 PC compared to no data share, while also giving on average 42.27% better
average cumulative revenue for each player. This work paves the way for
practical, privacy-preserving MARL, promising significant improvements in
secure computation within supply chain contexts and broadly.
Related papers
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information.
We introduce efficient protocol for secure linear function evaluation.
We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models.
arXiv Detail & Related papers (2024-11-14T08:55:14Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server.
FL remains vulnerable to inference attacks during model update transmissions.
We present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding.
arXiv Detail & Related papers (2024-06-13T14:16:50Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Secure Distributed/Federated Learning: Prediction-Privacy Trade-Off for
Multi-Agent System [4.190359509901197]
In the big data era, performing inference within the distributed and federated learning (DL and FL) frameworks, the central server needs to process a large amount of data.
Considering the decentralized computing topology, privacy has become a first-class concern.
We study the textitprivacy-aware server to multi-agent assignment problem subject to information processing constraints associated with each agent.
arXiv Detail & Related papers (2022-04-24T19:19:20Z) - MPCLeague: Robust MPC Platform for Privacy-Preserving Machine Learning [5.203329540700177]
This thesis focuses on designing efficient MPC frameworks for 2, 3 and 4 parties, with at most one corruption and supports ring structures.
We propose two variants for each of our frameworks, with one variant aiming to minimise the execution time while the other focuses on the monetary cost.
arXiv Detail & Related papers (2021-12-26T09:25:32Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Cooperative Multi-Agent Actor-Critic for Privacy-Preserving Load
Scheduling in a Residential Microgrid [71.17179010567123]
We propose a privacy-preserving multi-agent actor-critic framework where the decentralized actors are trained with distributed critics.
The proposed framework can preserve the privacy of the households while simultaneously learn the multi-agent credit assignment mechanism implicitly.
arXiv Detail & Related papers (2021-10-06T14:05:26Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.