Neural Architecture Codesign for Fast Bragg Peak Analysis
- URL: http://arxiv.org/abs/2312.05978v2
- Date: Tue, 12 Dec 2023 04:14:51 GMT
- Title: Neural Architecture Codesign for Fast Bragg Peak Analysis
- Authors: Luke McDermott, Jason Weitz, Dmitri Demler, Daniel Cummings, Nhan
Tran, Javier Duarte
- Abstract summary: We develop an automated pipeline to streamline neural architecture codesign for fast, real-time Bragg peak analysis in microscopy.
Our method employs neural architecture search and AutoML to enhance these models, including hardware costs, leading to the discovery of more hardware-efficient neural architectures.
- Score: 1.7081438846690533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop an automated pipeline to streamline neural architecture codesign
for fast, real-time Bragg peak analysis in high-energy diffraction microscopy.
Traditional approaches, notably pseudo-Voigt fitting, demand significant
computational resources, prompting interest in deep learning models for more
efficient solutions. Our method employs neural architecture search and AutoML
to enhance these models, including hardware costs, leading to the discovery of
more hardware-efficient neural architectures. Our results match the
performance, while achieving a 13$\times$ reduction in bit operations compared
to the previous state-of-the-art. We show further speedup through model
compression techniques such as quantization-aware-training and neural network
pruning. Additionally, our hierarchical search space provides greater
flexibility in optimization, which can easily extend to other tasks and
domains.
Related papers
- Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
We present a graph diffusion-based NAS approach that uses discrete conditional graph diffusion processes to generate high-performing neural network architectures.
We show promising results on six standard benchmarks, yielding novel and unique architectures at a fast speed.
arXiv Detail & Related papers (2024-03-09T21:45:31Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREA is a custom cell-based evolution NAS algorithm that exploits an optimised combination of training-free metrics to rank architectures.
Our experiments, carried out on the common benchmarks NAS-Bench-101 and NATS-Bench, demonstrate that i) FreeREA is a fast, efficient, and effective search method for models automatic design.
arXiv Detail & Related papers (2022-06-17T11:16:28Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Does Form Follow Function? An Empirical Exploration of the Impact of
Deep Neural Network Architecture Design on Hardware-Specific Acceleration [76.35307867016336]
This study investigates the impact of deep neural network architecture design on the degree of inference speedup.
We show that while leveraging hardware-specific acceleration achieved an average inference speed-up of 380%, the degree of inference speed-up varied drastically depending on the macro-architecture design pattern.
arXiv Detail & Related papers (2021-07-08T23:05:39Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
We propose Multi-Scale Resource-Aware Neural Architecture Search (MS-RANAS)
We employ a one-shot architecture search approach in order to obtain a reduced search cost.
We achieve state-of-the-art results in terms of accuracy-speed trade-off.
arXiv Detail & Related papers (2020-09-29T11:56:01Z) - STONNE: A Detailed Architectural Simulator for Flexible Neural Network
Accelerators [5.326345912766044]
STONNE is a cycle-accurate, highly-modular and highly-extensible simulation framework.
We show how it can closely approach the performance results of the publicly available BSV-coded MAERI implementation.
arXiv Detail & Related papers (2020-06-10T19:20:52Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.