Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity
- URL: http://arxiv.org/abs/2312.06158v2
- Date: Sun, 26 May 2024 19:23:46 GMT
- Title: Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity
- Authors: Xudong Li, Timin Gao, Runze Hu, Yan Zhang, Shengchuan Zhang, Xiawu Zheng, Jingyuan Zheng, Yunhang Shen, Ke Li, Yutao Liu, Pingyang Dai, Rongrong Ji,
- Abstract summary: We propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) to remove harmful semantic noise features from the upstream task.
Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.
- Score: 55.399230250413986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. However, we make a key observation that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores, indicating that the extracted features may contain a significant amount of quality-irrelevant noise. To address this issue, we propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) that employs an adversarial perspective to remove harmful semantic noise features from the upstream task. Specifically, QFM-IQM enhances the semantic noise distinguish capabilities by matching image pairs with similar quality scores but varying semantic features as adversarial semantic noise and adaptively adjusting the upstream task's features by reducing sensitivity to adversarial noise perturbation. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.
Related papers
- Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment [15.235786583920062]
Blind image quality assessment (BIQA) serves as a fundamental task in computer vision, yet it often fails to consistently align with human subjective perception.
Recent advances show that multi-scale evaluation strategies are promising due to their ability to replicate the hierarchical structure of human vision.
This paper addresses two primary challenges: the significant redundancy of information across different scales, and the confusion caused by combining features from these scales.
arXiv Detail & Related papers (2024-11-13T20:17:30Z) - Multi-task Feature Enhancement Network for No-Reference Image Quality Assessment [4.4150617622399055]
Multi-task strategies based No-Reference Image Quality Assessment (NR-IQA) methods encounter several challenges.
Our framework consists of three key components: a high-frequency extraction network, a quality estimation network, and a distortion-aware network.
Empirical results from five standard IQA databases confirm that our method achieves high performance and also exhibits robust generalization ability.
arXiv Detail & Related papers (2024-11-12T05:10:32Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Feature Denoising Diffusion Model for Blind Image Quality Assessment [58.5808754919597]
Blind Image Quality Assessment (BIQA) aims to evaluate image quality in line with human perception, without reference benchmarks.
Deep learning BIQA methods typically depend on using features from high-level tasks for transfer learning.
In this paper, we take an initial step towards exploring the diffusion model for feature denoising in BIQA.
arXiv Detail & Related papers (2024-01-22T13:38:24Z) - Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - Blind Image Quality Assessment via Vision-Language Correspondence: A
Multitask Learning Perspective [93.56647950778357]
Blind image quality assessment (BIQA) predicts the human perception of image quality without any reference information.
We develop a general and automated multitask learning scheme for BIQA to exploit auxiliary knowledge from other tasks.
arXiv Detail & Related papers (2023-03-27T07:58:09Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation [4.104181348044472]
We propose a novel CNN architecture to decouple sources of uncertainty related to the task and different k-space artefacts.
We show that our uncertainty predictions provide a better estimate of MRI quality from the point of view of the task.
arXiv Detail & Related papers (2021-09-06T12:54:44Z) - No-Reference Image Quality Assessment by Hallucinating Pristine Features [24.35220427707458]
We propose a no-reference (NR) image quality assessment (IQA) method via feature level pseudo-reference (PR) hallucination.
The effectiveness of our proposed method is demonstrated on four popular IQA databases.
arXiv Detail & Related papers (2021-08-09T16:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.