Harmonic Mobile Manipulation
- URL: http://arxiv.org/abs/2312.06639v2
- Date: Tue, 15 Oct 2024 03:40:18 GMT
- Title: Harmonic Mobile Manipulation
- Authors: Ruihan Yang, Yejin Kim, Rose Hendrix, Aniruddha Kembhavi, Xiaolong Wang, Kiana Ehsani,
- Abstract summary: HarmonicMM is an end-to-end learning method that optimize both navigation and manipulation.
Our contributions include a new benchmark for mobile manipulation and the successful deployment with only RGB visual observation.
- Score: 35.82197562695662
- License:
- Abstract: Recent advancements in robotics have enabled robots to navigate complex scenes or manipulate diverse objects independently. However, robots are still impotent in many household tasks requiring coordinated behaviors such as opening doors. The factorization of navigation and manipulation, while effective for some tasks, fails in scenarios requiring coordinated actions. To address this challenge, we introduce, HarmonicMM, an end-to-end learning method that optimizes both navigation and manipulation, showing notable improvement over existing techniques in everyday tasks. This approach is validated in simulated and real-world environments and adapts to novel unseen settings without additional tuning. Our contributions include a new benchmark for mobile manipulation and the successful deployment with only RGB visual observation in a real unseen apartment, demonstrating the potential for practical indoor robot deployment in daily life. More results are on our project site: https://rchalyang.github.io/HarmonicMM/
Related papers
- Zero-Cost Whole-Body Teleoperation for Mobile Manipulation [8.71539730969424]
MoMa-Teleop is a novel teleoperation method that delegates the base motions to a reinforcement learning agent.
We demonstrate that our approach results in a significant reduction in task completion time across a variety of robots and tasks.
arXiv Detail & Related papers (2024-09-23T15:09:45Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
We introduce an interactive robotic manipulation framework called Polaris.
Polaris integrates perception and interaction by utilizing GPT-4 alongside grounded vision models.
We propose a novel Synthetic-to-Real (Syn2Real) pose estimation pipeline.
arXiv Detail & Related papers (2024-08-15T06:40:38Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Learning Hierarchical Interactive Multi-Object Search for Mobile
Manipulation [10.21450780640562]
We introduce a novel interactive multi-object search task in which a robot has to open doors to navigate rooms and search inside cabinets and drawers to find target objects.
These new challenges require combining manipulation and navigation skills in unexplored environments.
We present HIMOS, a hierarchical reinforcement learning approach that learns to compose exploration, navigation, and manipulation skills.
arXiv Detail & Related papers (2023-07-12T12:25:33Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) is the problem of picking any object in any unseen environment, and placing it in a commanded location.
HomeRobot has two components: a simulation component, which uses a large and diverse curated object set in new, high-quality multi-room home environments; and a real-world component, providing a software stack for the low-cost Hello Robot Stretch.
arXiv Detail & Related papers (2023-06-20T14:30:32Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
We train a visual affordance model that estimates where and how in the scene a human is likely to interact.
The structure of these behavioral affordances directly enables the robot to perform many complex tasks.
We show the efficacy of our approach, which we call VRB, across 4 real world environments, over 10 different tasks, and 2 robotic platforms operating in the wild.
arXiv Detail & Related papers (2023-04-17T17:59:34Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - N$^2$M$^2$: Learning Navigation for Arbitrary Mobile Manipulation
Motions in Unseen and Dynamic Environments [9.079709086741987]
We introduce Neural Navigation for Mobile Manipulation (N$2$M$2$) which extends this decomposition to complex obstacle environments.
The resulting approach can perform unseen, long-horizon tasks in unexplored environments while instantly reacting to dynamic obstacles and environmental changes.
We demonstrate the capabilities of our proposed approach in extensive simulation and real-world experiments on multiple kinematically diverse mobile manipulators.
arXiv Detail & Related papers (2022-06-17T12:52:41Z) - Error-Aware Imitation Learning from Teleoperation Data for Mobile
Manipulation [54.31414116478024]
In mobile manipulation (MM), robots can both navigate within and interact with their environment.
In this work, we explore how to apply imitation learning (IL) to learn continuous visuo-motor policies for MM tasks.
arXiv Detail & Related papers (2021-12-09T23:54:59Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
We tackle real-world long-horizon robot manipulation tasks through skill discovery.
We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations.
Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks.
arXiv Detail & Related papers (2021-09-28T16:18:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.