ReRoGCRL: Representation-based Robustness in Goal-Conditioned
Reinforcement Learning
- URL: http://arxiv.org/abs/2312.07392v3
- Date: Tue, 19 Dec 2023 21:37:32 GMT
- Title: ReRoGCRL: Representation-based Robustness in Goal-Conditioned
Reinforcement Learning
- Authors: Xiangyu Yin, Sihao Wu, Jiaxu Liu, Meng Fang, Xingyu Zhao, Xiaowei
Huang, Wenjie Ruan
- Abstract summary: Goal-Conditioned Reinforcement Learning (GCRL) has gained attention, but its algorithmic robustness against adversarial perturbations remains unexplored.
We first propose the Semi-Contrastive Representation attack, inspired by the adversarial contrastive attack.
We then introduce Adversarial Representation Tactics, which combines Semi-Contrastive Adversarial Augmentation with Sensitivity-Aware Regularizer.
- Score: 29.868059421372244
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While Goal-Conditioned Reinforcement Learning (GCRL) has gained attention,
its algorithmic robustness against adversarial perturbations remains
unexplored. The attacks and robust representation training methods that are
designed for traditional RL become less effective when applied to GCRL. To
address this challenge, we first propose the Semi-Contrastive Representation
attack, a novel approach inspired by the adversarial contrastive attack. Unlike
existing attacks in RL, it only necessitates information from the policy
function and can be seamlessly implemented during deployment. Then, to mitigate
the vulnerability of existing GCRL algorithms, we introduce Adversarial
Representation Tactics, which combines Semi-Contrastive Adversarial
Augmentation with Sensitivity-Aware Regularizer to improve the adversarial
robustness of the underlying RL agent against various types of perturbations.
Extensive experiments validate the superior performance of our attack and
defence methods across multiple state-of-the-art GCRL algorithms. Our tool
ReRoGCRL is available at https://github.com/TrustAI/ReRoGCRL.
Related papers
- SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
Reinforcement learning (RL) is an actively growing field that is seeing increased usage in real-world, safety-critical applications.
In this work we explore a particularly stealthy form of training-time attacks against RL -- backdoor poisoning.
We formulate a novel poisoning attack framework which interlinks the adversary's objectives with those of finding an optimal policy.
arXiv Detail & Related papers (2024-05-30T23:31:25Z) - Efficient Adversarial Training without Attacking: Worst-Case-Aware
Robust Reinforcement Learning [14.702446153750497]
Worst-case-aware Robust RL (WocaR-RL) is a robust training framework for deep reinforcement learning.
We show that WocaR-RL achieves state-of-the-art performance under various strong attacks.
arXiv Detail & Related papers (2022-10-12T05:24:46Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
Robust Reinforcement Learning (RL) focuses on improving performances under model errors or adversarial attacks.
Most of the existing literature models RARL as a zero-sum simultaneous game with Nash equilibrium as the solution concept.
We introduce a novel hierarchical formulation of robust RL - a general-sum Stackelberg game model called RRL-Stack.
arXiv Detail & Related papers (2022-02-19T03:44:05Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
We show that several state-of-the-art RL agents proposed for power system control are vulnerable to adversarial attacks.
Specifically, we use an adversary Markov Decision Process to learn an attack policy, and demonstrate the potency of our attack.
We propose to use adversarial training to increase the robustness of RL agent against attacks and avoid infeasible operational decisions.
arXiv Detail & Related papers (2021-10-18T00:50:34Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Robust Reinforcement Learning on State Observations with Learned Optimal
Adversary [86.0846119254031]
We study the robustness of reinforcement learning with adversarially perturbed state observations.
With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found.
For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones.
arXiv Detail & Related papers (2021-01-21T05:38:52Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent's inputs.
We propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against adversarial attacks.
arXiv Detail & Related papers (2020-08-05T07:49:42Z) - Robust Reinforcement Learning using Adversarial Populations [118.73193330231163]
Reinforcement Learning (RL) is an effective tool for controller design but can struggle with issues of robustness.
We show that using a single adversary does not consistently yield robustness to dynamics variations under standard parametrizations of the adversary.
We propose a population-based augmentation to the Robust RL formulation in which we randomly initialize a population of adversaries and sample from the population uniformly during training.
arXiv Detail & Related papers (2020-08-04T20:57:32Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.