Investigating YOLO Models Towards Outdoor Obstacle Detection For
Visually Impaired People
- URL: http://arxiv.org/abs/2312.07571v1
- Date: Sun, 10 Dec 2023 13:16:22 GMT
- Title: Investigating YOLO Models Towards Outdoor Obstacle Detection For
Visually Impaired People
- Authors: Chenhao He and Pramit Saha
- Abstract summary: Seven different YOLO object detection models were implemented.
YOLOv8 was found to be the best model, which reached a precision of $80%$ and a recall of $68.2%$ on a well-known Obstacle dataset.
YOLO-NAS was found to be suboptimal for the obstacle detection task.
- Score: 3.4628430044380973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The utilization of deep learning-based object detection is an effective
approach to assist visually impaired individuals in avoiding obstacles. In this
paper, we implemented seven different YOLO object detection models
\textit{viz}., YOLO-NAS (small, medium, large), YOLOv8, YOLOv7, YOLOv6, and
YOLOv5 and performed comprehensive evaluation with carefully tuned
hyperparameters, to analyze how these models performed on images containing
common daily-life objects presented on roads and sidewalks. After a systematic
investigation, YOLOv8 was found to be the best model, which reached a precision
of $80\%$ and a recall of $68.2\%$ on a well-known Obstacle Dataset which
includes images from VOC dataset, COCO dataset, and TT100K dataset along with
images collected by the researchers in the field. Despite being the latest
model and demonstrating better performance in many other applications, YOLO-NAS
was found to be suboptimal for the obstacle detection task.
Related papers
- Optimizing YOLO Architectures for Optimal Road Damage Detection and Classification: A Comparative Study from YOLOv7 to YOLOv10 [0.0]
This paper presents a comprehensive workflow for road damage detection using deep learning models.
To accommodate hardware limitations, large images are cropped, and lightweight models are utilized.
The proposed approach employs multiple model architectures, including a custom YOLOv7 model with Coordinate Attention layers and a Tiny YOLOv7 model.
arXiv Detail & Related papers (2024-10-10T22:55:12Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
YOLOs have emerged as the predominant paradigm in the field of real-time object detection.
The reliance on the non-maximum suppression (NMS) for post-processing hampers the end-to-end deployment of YOLOs.
We introduce the holistic efficiency-accuracy driven model design strategy for YOLOs.
arXiv Detail & Related papers (2024-05-23T11:44:29Z) - YOLO-World: Real-Time Open-Vocabulary Object Detection [87.08732047660058]
We introduce YOLO-World, an innovative approach that enhances YOLO with open-vocabulary detection capabilities.
Our method excels in detecting a wide range of objects in a zero-shot manner with high efficiency.
YOLO-World achieves 35.4 AP with 52.0 FPS on V100, which outperforms many state-of-the-art methods in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-01-30T18:59:38Z) - DiffYOLO: Object Detection for Anti-Noise via YOLO and Diffusion Models [4.7846759259287985]
We propose a framework in this paper that apply it on the YOLO models called DiffYOLO.
Specifically, we extract feature maps from the denoising diffusion probabilistic models to enhance the well-trained models.
Results proved this framework can not only prove the performance on noisy datasets, but also prove the detection results on high-quality test datasets.
arXiv Detail & Related papers (2024-01-03T10:35:35Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
We provide an efficient and performant object detector, termed YOLO-MS.
We train our YOLO-MS on the MS COCO dataset from scratch without relying on any other large-scale datasets.
Our work can also be used as a plug-and-play module for other YOLO models.
arXiv Detail & Related papers (2023-08-10T10:12:27Z) - YOLOv3 with Spatial Pyramid Pooling for Object Detection with Unmanned
Aerial Vehicles [0.0]
We aim to improve the performance of the one-stage detector YOLOv3 by adding a Spatial Pyramid Pooling layer on the end of the backbone darknet-53.
We also conducted an evaluation study on different versions of YOLOv3 methods.
arXiv Detail & Related papers (2023-05-21T04:41:52Z) - Performance Analysis of YOLO-based Architectures for Vehicle Detection
from Traffic Images in Bangladesh [0.0]
We find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh.
Models were trained on a dataset containing 7390 images belonging to 21 types of vehicles.
We found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
arXiv Detail & Related papers (2022-12-18T18:53:35Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z) - Evaluation of YOLO Models with Sliced Inference for Small Object
Detection [0.0]
This work aims to benchmark the YOLOv5 and YOLOX models for small object detection.
The effects of sliced fine-tuning and sliced inference combined produced substantial improvement for all models.
arXiv Detail & Related papers (2022-03-09T15:24:30Z) - Learning Target Candidate Association to Keep Track of What Not to Track [100.80610986625693]
We propose to keep track of distractor objects in order to continue tracking the target.
To tackle the problem of lacking ground-truth correspondences between distractor objects in visual tracking, we propose a training strategy that combines partial annotations with self-supervision.
Our tracker sets a new state-of-the-art on six benchmarks, achieving an AUC score of 67.2% on LaSOT and a +6.1% absolute gain on the OxUvA long-term dataset.
arXiv Detail & Related papers (2021-03-30T17:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.