Differentially private projection-depth-based medians
- URL: http://arxiv.org/abs/2312.07792v3
- Date: Tue, 23 Jul 2024 13:25:57 GMT
- Title: Differentially private projection-depth-based medians
- Authors: Kelly Ramsay, Dylan Spicker,
- Abstract summary: We develop $(epsilon,delta)$-differentially private projection-depth-based medians using the propose-test-release (PTR) and exponential mechanisms.
We quantify the probability the test in PTR fails, as well as the cost of privacy via finite sample deviation bounds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop $(\epsilon,\delta)$-differentially private projection-depth-based medians using the propose-test-release (PTR) and exponential mechanisms. Under general conditions on the input parameters and the population measure, (e.g. we do not assume any moment bounds), we quantify the probability the test in PTR fails, as well as the cost of privacy via finite sample deviation bounds. Next, we show that when some observations are contaminated, the private projection-depth-based median does not break down, provided its input location and scale estimators do not break down. We demonstrate our main results on the canonical projection-depth-based median, as well as on projection-depth-based medians derived from trimmed estimators. In the Gaussian setting, we show that the resulting deviation bound matches the known lower bound for private Gaussian mean estimation. In the Cauchy setting, we show that the ``outlier error amplification'' effect resulting from the heavy tails outweighs the cost of privacy. This result is then verified via numerical simulations. Additionally, we present results on general PTR mechanisms and a uniform concentration result on the projected spacings of order statistics, which may be of general interest.
Related papers
- On Differentially Private U Statistics [25.683071759227293]
We propose a new thresholding-based approach using emphlocal H'ajek projections to reweight different subsets of the data.
This leads to nearly optimal private error for non-degenerate U-statistics and a strong indication of near-optimality for degenerate U-statistics.
arXiv Detail & Related papers (2024-07-06T03:27:14Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Sparse PCA with Oracle Property [115.72363972222622]
We propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations.
We prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA.
arXiv Detail & Related papers (2023-12-28T02:52:54Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
A classical approach to private mean estimation is to compute the true mean and add unbiased, but possibly correlated, Gaussian noise to it.
We show that for every input dataset, an unbiased mean estimator satisfying concentrated differential privacy introduces approximately at least as much error.
arXiv Detail & Related papers (2023-01-31T18:47:42Z) - A Bias-Accuracy-Privacy Trilemma for Statistical Estimation [16.365507345447803]
We show that no algorithm can simultaneously have low bias, low error, and low privacy loss for arbitrary distributions.
We show that unbiased mean estimation is possible under a more permissive notion of differential privacy.
arXiv Detail & Related papers (2023-01-30T23:40:20Z) - Differentially private multivariate medians [4.588028371034407]
We develop novel finite-sample performance guarantees for differentially private depth-based medians.
We show that under Cauchy marginals, the cost of heavy-tailed location estimation outweighs the cost of privacy.
arXiv Detail & Related papers (2022-10-12T17:56:04Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
We show for Gaussian measurements and emphany prior distribution on the signal, that the posterior sampling estimator achieves near-optimal recovery guarantees.
We implement the posterior sampling estimator for deep generative priors using Langevin dynamics, and empirically find that it produces accurate estimates with more diversity than MAP.
arXiv Detail & Related papers (2021-06-21T22:51:56Z) - TREND: Truncated Generalized Normal Density Estimation of Inception
Embeddings for Accurate GAN Evaluation [27.80517509528215]
Frech'et Inception distance is one of the most widely used metrics for evaluation of GANs.
We argue that this is an over-simplified assumption, which may lead to unreliable evaluation results.
We propose a novel metric for accurate evaluation of GANs, named TREND (TRuncated gEneralized Normal Density estimation of inception embeddings)
arXiv Detail & Related papers (2021-04-30T05:51:07Z) - Propose, Test, Release: Differentially private estimation with high
probability [9.25177374431812]
We introduce a new general version of the PTR mechanism that allows us to derive high probability error bounds for differentially private estimators.
Our algorithms provide the first statistical guarantees for differentially private estimation of the median and mean without any boundedness assumptions on the data.
arXiv Detail & Related papers (2020-02-19T01:29:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.