CBQ: Cross-Block Quantization for Large Language Models
- URL: http://arxiv.org/abs/2312.07950v4
- Date: Mon, 15 Apr 2024 10:57:16 GMT
- Title: CBQ: Cross-Block Quantization for Large Language Models
- Authors: Xin Ding, Xiaoyu Liu, Zhijun Tu, Yun Zhang, Wei Li, Jie Hu, Hanting Chen, Yehui Tang, Zhiwei Xiong, Baoqun Yin, Yunhe Wang,
- Abstract summary: Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs.
We propose CBQ, a cross-block reconstruction-based PTQ method for LLMs.
CBQ employs a cross-block dependency using a reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation.
- Score: 66.82132832702895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs. However, existing PTQ methods only focus on handling the outliers within one layer or one block, which ignores the dependency of blocks and leads to severe performance degradation in low-bit settings. In this paper, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ employs a cross-block dependency using a homologous reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation. Furthermore, CBQ incorporates a coarse-to-fine preprocessing (CFP) strategy for suppressing weight and activation outliers, coupled with an adaptive LoRA-Rounding technique for precise weight quantization. These innovations enable CBQ to not only handle extreme outliers effectively but also improve overall quantization accuracy. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ quantizes the 4-bit LLAMA1-65B model within only 4.3 hours on a single GPU, achieving a commendable tradeoff between performance and quantization efficiency.
Related papers
- SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models [58.5019443418822]
Diffusion models have been proven highly effective at generating high-quality images.
As these models grow larger, they require significantly more memory and suffer from higher latency.
In this work, we aim to accelerate diffusion models by quantizing their weights and activations to 4 bits.
arXiv Detail & Related papers (2024-11-07T18:59:58Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss.
We propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm.
EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP)
arXiv Detail & Related papers (2024-07-10T17:53:30Z) - Attention-aware Post-training Quantization without Backpropagation [11.096116957844014]
Quantization is a promising solution for deploying large-scale language models on resource-constrained devices.
Existing quantization approaches rely on gradient-based optimization.
We propose a novel PTQ algorithm that considers inter-layer dependencies without relying on backpropagation.
arXiv Detail & Related papers (2024-06-19T11:53:21Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
Post-training quantization (PTQ) is a powerful compression technique investigated in large language models (LLMs)
Existing PTQ methods are not ideal in terms of accuracy and efficiency, especially with below 4 bit-widths.
This paper presents a Salience-Driven Mixed-Precision Quantization scheme for LLMs, namely SliM-LLM.
arXiv Detail & Related papers (2024-05-23T16:21:48Z) - Mitigating the Impact of Outlier Channels for Language Model Quantization with Activation Regularization [62.15918574997175]
It is known that language models contain outlier channels whose values on average are orders of magnitude higher than other channels.
We propose a strategy which regularizes a layer's inputs via quantization-aware training (QAT) and its outputs via activation kurtosis regularization.
We show that regularizing both the inputs and outputs is crucial for preventing a model's "migrating" the difficulty in input quantization to the weights.
arXiv Detail & Related papers (2024-04-04T17:25:30Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
Post-Training Quantization (PTQ) has emerged as a subject of considerable interest due to its compression efficiency and cost-effectiveness in the context of training.
Existing PTQ methods for Large-scale Language Models (LLMs) limit the optimization scope to scaling transformations between pre- and post-quantization weights.
In this paper, we advocate for the direct optimization using equivalent Affine transformations in PTQ (AffineQuant)
arXiv Detail & Related papers (2024-03-19T08:40:21Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
We propose L4Q, a method that integrates Quantization-Aware Training (QAT) with Low-Rank Adaptation (LoRA) to effectively reduce quantization error.
By employing a memory-optimized layer design, L4Q significantly reduces QAT's memory overhead while producing fully-quantized weights.
arXiv Detail & Related papers (2024-02-07T14:35:05Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
We introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision.
Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations.
Our simple and effective approach makes it more practical for real-world applications.
arXiv Detail & Related papers (2023-09-06T06:51:15Z) - BRECQ: Pushing the Limit of Post-Training Quantization by Block
Reconstruction [29.040991149922615]
We study the challenging task of neural network quantization without end-to-end retraining, called Post-training Quantization (PTQ)
We propose a novel PTQ framework, dubbed BRECQ, which pushes the limits of bitwidth in PTQ down to INT2 for the first time.
For the first time we prove that, without bells and whistles, PTQ can attain 4-bit ResNet and MobileNetV2 comparable with QAT and enjoy 240 times faster production of quantized models.
arXiv Detail & Related papers (2021-02-10T13:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.