Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies
- URL: http://arxiv.org/abs/2312.07953v2
- Date: Thu, 14 Dec 2023 06:01:47 GMT
- Title: Enhancing Robotic Navigation: An Evaluation of Single and
Multi-Objective Reinforcement Learning Strategies
- Authors: Vicki Young, Jumman Hossain, Nirmalya Roy
- Abstract summary: This study presents a comparative analysis between single-objective and multi-objective reinforcement learning methods for training a robot to navigate effectively to an end goal.
By modifying the reward function to return a vector of rewards, each pertaining to a distinct objective, the robot learns a policy that effectively balances the different goals.
- Score: 0.9208007322096532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study presents a comparative analysis between single-objective and
multi-objective reinforcement learning methods for training a robot to navigate
effectively to an end goal while efficiently avoiding obstacles. Traditional
reinforcement learning techniques, namely Deep Q-Network (DQN), Deep
Deterministic Policy Gradient (DDPG), and Twin Delayed DDPG (TD3), have been
evaluated using the Gazebo simulation framework in a variety of environments
with parameters such as random goal and robot starting locations. These methods
provide a numerical reward to the robot, offering an indication of action
quality in relation to the goal. However, their limitations become apparent in
complex settings where multiple, potentially conflicting, objectives are
present. To address these limitations, we propose an approach employing
Multi-Objective Reinforcement Learning (MORL). By modifying the reward function
to return a vector of rewards, each pertaining to a distinct objective, the
robot learns a policy that effectively balances the different goals, aiming to
achieve a Pareto optimal solution. This comparative study highlights the
potential for MORL in complex, dynamic robotic navigation tasks, setting the
stage for future investigations into more adaptable and robust robotic
behaviors.
Related papers
- Dynamic value alignment through preference aggregation of multiple
objectives [0.0]
We present a methodology for dynamic value alignment, where the values that are to be aligned with are dynamically changing.
We apply this approach to extend Deep $Q$-Learning to accommodate multiple objectives and evaluate this method on a simplified two-leg intersection.
arXiv Detail & Related papers (2023-10-09T17:07:26Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
We propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration.
We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up.
arXiv Detail & Related papers (2022-11-09T10:28:40Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z) - Deep Reinforcement Learning with Adaptive Hierarchical Reward for
MultiMulti-Phase Multi Multi-Objective Dexterous Manipulation [11.638614321552616]
Varying priority makes a robot hardly or even failed to learn an optimal policy with a deep reinforcement learning (DRL) method.
We develop a novel Adaptive Hierarchical Reward Mechanism (AHRM) to guide the DRL agent to learn manipulation tasks with multiple prioritized objectives.
The proposed method is validated in a multi-objective manipulation task with a JACO robot arm.
arXiv Detail & Related papers (2022-05-26T15:44:31Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
Quality-Diversity algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills.
Existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions.
This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments.
arXiv Detail & Related papers (2022-04-07T14:07:51Z) - Automatic Goal Generation using Dynamical Distance Learning [5.797847756967884]
Reinforcement Learning (RL) agents can learn to solve complex sequential decision making tasks by interacting with the environment.
In the field of multi-goal RL, where agents are required to reach multiple goals to solve complex tasks, improving sample efficiency can be especially challenging.
We propose a method for automatic goal generation using a dynamical distance function (DDF) in a self-supervised fashion.
arXiv Detail & Related papers (2021-11-07T16:23:56Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
We investigate whether the Wasserstein-1 distance between a policy's state visitation distribution and a target distribution can be utilized effectively for reinforcement learning tasks.
Our approach, termed Adversarial Intrinsic Motivation (AIM), estimates this Wasserstein-1 distance through its dual objective and uses it to compute a supplemental reward function.
arXiv Detail & Related papers (2021-05-27T17:51:34Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Automatic Curriculum Learning through Value Disagreement [95.19299356298876]
Continually solving new, unsolved tasks is the key to learning diverse behaviors.
In the multi-task domain, where an agent needs to reach multiple goals, the choice of training goals can largely affect sample efficiency.
We propose setting up an automatic curriculum for goals that the agent needs to solve.
We evaluate our method across 13 multi-goal robotic tasks and 5 navigation tasks, and demonstrate performance gains over current state-of-the-art methods.
arXiv Detail & Related papers (2020-06-17T03:58:25Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
We propose an algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way.
We show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.
arXiv Detail & Related papers (2020-05-15T13:02:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.